Bài tập cuối chương 4
Hướng dẫn giải Bài 8 (Trang 100, SGK Toán 10, Bộ Cánh Diều mới nhất, Tập 1)
<p><strong>B&agrave;i 8 (Trang 100, SGK To&aacute;n 10, Bộ C&aacute;nh Diều mới nhất, Tập 1)</strong></p> <p>Cho h&igrave;nh b&igrave;nh h&agrave;nh ABCD c&oacute; AB = 4, AD = 6, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><mn>60</mn><mo>&#176;</mo></math> (H&igrave;nh 73).</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/11072022/bai-8-trand-100-toan-lop-10-tap-1-xR27tV.png" /></p> <p>a) Biểu thị c&aacute;c vectơ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math> theo&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></math>.</p> <p>b) T&iacute;nh c&aacute;c t&iacute;ch v&ocirc; hướng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math>.</p> <p>c) T&iacute;nh độ d&agrave;i c&aacute;c đường ch&eacute;o BD, AC.&nbsp;</p> <p><span style="text-decoration: underline;"><em><strong>Hướng dẫn giải:</strong></em></span></p> <p>a) Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mover><mrow><mo>&#160;</mo><mi>B</mi><mi>A</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>D</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>-</mo><mover><mrow><mi>B</mi><mi>A</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>Do ABCD l&agrave; h&igrave;nh b&igrave;nh h&agrave;nh n&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>B</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>b) Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>D</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mfenced open="|" close="|"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover></mfenced><mo>.</mo><mfenced open="|" close="|"><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></mfenced><mo>.</mo><mi>cos</mi><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>A</mi><mi>B</mi><mo>.</mo><mi>A</mi><mi>D</mi><mo>.</mo><mi>cos</mi><mfenced><mover><mrow><mi>B</mi><mi>A</mi><mi>D</mi></mrow><mo>^</mo></mover></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>4</mn><mo>.</mo><mn>6</mn><mo>.</mo><mi>cos</mi><mfenced><mrow><mn>60</mn><mo>&#176;</mo></mrow></mfenced><mo>=</mo><mn>12</mn></math></p> <p>Do đ&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mn>12</mn></math></p> <p>Ta cũng c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mo>&#160;</mo><mo>=</mo><msup><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mn>2</mn></msup><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>A</mi><msup><mi>B</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>12</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mn>4</mn><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>12</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>28</mn></math></p> <p>Do đ&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mn>28</mn></math></p> <p>Lại c&oacute;:&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><msup><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mn>2</mn></msup><mo>-</mo><msup><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mn>2</mn></msup><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mi>A</mi><msup><mi>D</mi><mn>2</mn></msup><mo>-</mo><mi>A</mi><msup><mi>B</mi><mn>2</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mn>6</mn><mn>2</mn></msup><mo>-</mo><msup><mn>4</mn><mn>2</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>20</mn></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>20</mn></math></p> <p>c) &Aacute;p dụng định l&iacute; c&ocirc;sin trong gi&aacute;c ABD ta c&oacute;:</p> <p>BD<sup>2</sup>&nbsp;= AB<sup>2</sup>&nbsp;+ AD<sup>2</sup>&nbsp;&ndash; 2 . AB . AD . cosA</p> <p>&nbsp; &nbsp; &nbsp; &nbsp; = 4<sup>2</sup>&nbsp;+ 6<sup>2</sup>&nbsp;&ndash; 2 . 4 . 6 . cos 60&deg; = 28</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mi>B</mi><mi>D</mi><mo>=</mo><msqrt><mn>28</mn></msqrt><mo>=</mo><mn>2</mn><msqrt><mn>7</mn></msqrt></math></p> <p>Ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>D</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>&#8658;</mo><mo>&#160;</mo><msup><mfenced><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mfenced><mn>2</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mn>2</mn></msup><mspace linebreak="newline"/><mo>&#8660;</mo><msup><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mn>2</mn></msup><mo>=</mo><msup><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mn>2</mn></msup><mo>+</mo><mn>2</mn><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><msup><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mn>2</mn></msup><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mi>A</mi><msup><mi>C</mi><mn>2</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>A</mi><msup><mi>B</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mi>A</mi><msup><mi>D</mi><mn>2</mn></msup><mspace linebreak="newline"/><mo>&#8658;</mo><mo>&#160;</mo><mi>A</mi><msup><mi>C</mi><mn>2</mn></msup><mo>=</mo><mo>&#160;</mo><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><mn>2</mn><mo>.</mo><mn>12</mn><mo>+</mo><msup><mn>6</mn><mn>2</mn></msup><mo>=</mo><mn>76</mn><mspace linebreak="newline"/><mo>&#8658;</mo><mo>&#160;</mo><mi>A</mi><mi>C</mi><mo>=</mo><mo>&#160;</mo><msqrt><mn>76</mn></msqrt><mo>=</mo><mn>2</mn><msqrt><mn>19</mn></msqrt></math></p>
Xem lời giải bài tập khác cùng bài