Hướng dẫn giải Bài 1 (Trang 99, SGK Toán 10, Bộ Cánh Diều mới nhất, Tập 1)
<p><strong>Bài 1 (Trang 99, SGK Toán 10, Bộ Cánh Diều mới nhất, Tập 1)</strong></p>
<p>Cho tam giác ABC có AB = 3, AC = 4, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><mn>120</mn><mo>°</mo></math>. Tính (làm tròn kết quả đến hàng đơn vị):</p>
<p>a) Độ dài cạnh BC và độ lớn góc B;</p>
<p>b) Bán kính đường tròn ngoại tiếp;</p>
<p>c) Diện tích của tam giác;</p>
<p>d) Độ dài đường cao xuất phát từ A;</p>
<p>e) <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>→</mo></mover></math> với M là trung điểm của BC.</p>
<p><span style="text-decoration: underline;"><em><strong>Hướng dẫn giải:</strong></em></span></p>
<p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/07072022/bai-1-trand-99-toan-lop-10-tap-1-uwxCR4.png" /></p>
<p>a) +) Áp dụng định lý cosin trong tam giác ABC ta có:</p>
<p>BC<sup>2</sup> = AB<sup>2</sup> + AC­<sup>2</sup> – 2 . AB . AC . cos <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover></math></p>
<p> = 3<sup>2</sup> + 4<sup>2</sup> – 2 . 3. 4 . cos 120°</p>
<p> = 9 + 16 – (– 12)</p>
<p> = 37</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>B</mi><mi>C</mi><mo>=</mo><msqrt><mn>37</mn></msqrt><mo>≈</mo><mn>6</mn></math></p>
<p>+) Ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mi>B</mi></mfenced><mo>=</mo><mfrac><mrow><mi>A</mi><msup><mi>B</mi><mn>2</mn></msup><mo>+</mo><mo> </mo><mi>B</mi><msup><mi>C</mi><mn>2</mn></msup><mo>-</mo><mo> </mo><mi>A</mi><msup><mi>C</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><mi>A</mi><mi>B</mi><mo>.</mo><mi>B</mi><mi>C</mi></mrow></mfrac><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><msup><mn>3</mn><mn>2</mn></msup><mo>+</mo><mo> </mo><msup><mn>6</mn><mn>2</mn></msup><mo> </mo><mo>-</mo><mo> </mo><msup><mn>4</mn><mn>2</mn></msup></mrow><mrow><mn>2</mn><mo>.</mo><mn>3</mn><mo>.</mo><mn>6</mn></mrow></mfrac><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>29</mn><mn>36</mn></mfrac><mo> </mo><mo>⇒</mo><mover><mrow><mo> </mo><mi>B</mi></mrow><mo>^</mo></mover><mo> </mo><mo>≈</mo><mo> </mo><mn>36</mn><mo>°</mo></math></p>
<p>b) Áp dụng định lý sin trong tam giác ABC ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>B</mi><mi>C</mi></mrow><mrow><mi>sin</mi><mfenced><mi>A</mi></mfenced></mrow></mfrac><mo>=</mo><mn>2</mn><mi>R</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>R</mi><mo>=</mo><mfrac><mrow><mi>B</mi><mi>C</mi></mrow><mrow><mn>2</mn><mi>sin</mi><mfenced><mi>A</mi></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>6</mn><mrow><mn>2</mn><mo>.</mo><mi>sin</mi><mfenced><mrow><mn>120</mn><mo>°</mo></mrow></mfenced></mrow></mfrac><mo>=</mo><mn>2</mn><msqrt><mn>3</mn></msqrt><mo>≈</mo><mn>3</mn></math></p>
<p>Vậy bán kính đường trong ngoại tiếp tam giác ABC là R ≈ 3.</p>
<p>c) Diện tích tam giác ABC là: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>A</mi><mi>B</mi><mo>.</mo><mi>A</mi><mi>C</mi><mo>.</mo><mi>sin</mi><mfenced><mi>A</mi></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>3</mn><mo>.</mo><mn>4</mn><mo>.</mo><mi>sin</mi><mfenced><mrow><mn>120</mn><mo>°</mo></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>3</mn><msqrt><mn>3</mn></msqrt><mo> </mo><mo>≈</mo><mo> </mo><mn>5</mn></math></p>
<p>d) Kẻ đường cao AH</p>
<p>Ta có diện tích tam giác ABC là: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>A</mi><mi>H</mi><mo>.</mo><mi>B</mi><mi>C</mi><mo> </mo><mo>⇒</mo><mo> </mo><mi>A</mi><mi>H</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mn>2</mn><mi>S</mi></mrow><mrow><mi>B</mi><mi>C</mi></mrow></mfrac><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow><mn>6</mn></mfrac><mo> </mo><mo>≈</mo><mo> </mo><mn>2</mn></math></p>
<p>e) + Ta có: </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi><mo> </mo></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mfenced open="|" close="|"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover></mfenced><mo>.</mo><mfenced open="|" close="|"><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mfenced><mo>.</mo><mi>cos</mi><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo> </mo><mi>A</mi><mi>B</mi><mo>.</mo><mi>A</mi><mi>C</mi><mo>.</mo><mi>cos</mi><mfenced><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover></mfenced><mspace linebreak="newline"/><mo>=</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>4</mn><mo>.</mo><mi>cos</mi><mfenced><mrow><mn>120</mn><mo>°</mo></mrow></mfenced><mo> </mo><mo>=</mo><mo>-</mo><mn>6</mn></math></p>
<p>Do đó: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover><mo>=</mo><mo>-</mo><mn>6</mn></math></p>
<p>+ Do M là trung điểm của BC nên ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover><mrow><mo> </mo><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mn>2</mn><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>→</mo></mover><mo> </mo><mo>⇒</mo><mover><mrow><mo> </mo><mi>A</mi><mi>M</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover><mrow><mo> </mo><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced></math></p>
<p>Khi đó: </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi><mo> </mo></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover><mrow><mo> </mo><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>→</mo></mover><mspace linebreak="newline"/><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover><mrow><mo> </mo><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo>.</mo><mfenced><mrow><mover><mrow><mi>B</mi><mi>A</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mo> </mo><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mo> </mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo>.</mo><mfenced><mrow><mfenced><mrow><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo> </mo><mo>+</mo><mover><mrow><mo> </mo><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover><mrow><mo> </mo><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo>.</mo><mfenced><mrow><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover><mo> </mo><mo>-</mo><mover><mrow><mo> </mo><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><msup><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover><mn>2</mn></msup><mo>-</mo><msup><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mn>2</mn></msup></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi>A</mi><mi>C</mi><mo>-</mo><mi>A</mi><mi>B</mi></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>4</mn><mo>-</mo><mn>3</mn></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p>Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>