Bài tập cuối chương 4
Hướng dẫn giải Bài 1 (Trang 99, SGK Toán 10, Bộ Cánh Diều mới nhất, Tập 1)
<p><strong>B&agrave;i 1 (Trang 99, SGK To&aacute;n 10, Bộ C&aacute;nh Diều mới nhất, Tập 1)</strong></p> <p>Cho tam gi&aacute;c ABC c&oacute; AB = 3, AC = 4, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><mn>120</mn><mo>&#176;</mo></math>. T&iacute;nh (l&agrave;m tr&ograve;n kết quả đến h&agrave;ng đơn vị):</p> <p>a) Độ d&agrave;i cạnh BC v&agrave; độ lớn g&oacute;c B;</p> <p>b) B&aacute;n k&iacute;nh đường tr&ograve;n ngoại tiếp;</p> <p>c) Diện t&iacute;ch của tam gi&aacute;c;</p> <p>d) Độ d&agrave;i đường cao xuất ph&aacute;t từ A;</p> <p>e) <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math> với M l&agrave; trung điểm của BC.</p> <p><span style="text-decoration: underline;"><em><strong>Hướng dẫn giải:</strong></em></span></p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/07072022/bai-1-trand-99-toan-lop-10-tap-1-uwxCR4.png" /></p> <p>a) +) &Aacute;p dụng định l&yacute; cosin trong tam gi&aacute;c ABC ta c&oacute;:</p> <p>BC<sup>2</sup>&nbsp;= AB<sup>2</sup>&nbsp;+ AC&shy;<sup>2</sup> &ndash; 2 . AB . AC . cos <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover></math></p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 3<sup>2</sup>&nbsp;+ 4<sup>2</sup>&nbsp;&ndash; 2 . 3. 4 . cos 120&deg;</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 9 + 16 &ndash; (&ndash; 12)</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = 37</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mi>B</mi><mi>C</mi><mo>=</mo><msqrt><mn>37</mn></msqrt><mo>&#8776;</mo><mn>6</mn></math></p> <p>+) Ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mi>B</mi></mfenced><mo>=</mo><mfrac><mrow><mi>A</mi><msup><mi>B</mi><mn>2</mn></msup><mo>+</mo><mo>&#160;</mo><mi>B</mi><msup><mi>C</mi><mn>2</mn></msup><mo>-</mo><mo>&#160;</mo><mi>A</mi><msup><mi>C</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><mi>A</mi><mi>B</mi><mo>.</mo><mi>B</mi><mi>C</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><msup><mn>3</mn><mn>2</mn></msup><mo>+</mo><mo>&#160;</mo><msup><mn>6</mn><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msup><mn>4</mn><mn>2</mn></msup></mrow><mrow><mn>2</mn><mo>.</mo><mn>3</mn><mo>.</mo><mn>6</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>29</mn><mn>36</mn></mfrac><mo>&#160;</mo><mo>&#8658;</mo><mover><mrow><mo>&#160;</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>&#8776;</mo><mo>&#160;</mo><mn>36</mn><mo>&#176;</mo></math></p> <p>b) &Aacute;p dụng định l&yacute; sin trong tam gi&aacute;c ABC ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>B</mi><mi>C</mi></mrow><mrow><mi>sin</mi><mfenced><mi>A</mi></mfenced></mrow></mfrac><mo>=</mo><mn>2</mn><mi>R</mi></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mi>R</mi><mo>=</mo><mfrac><mrow><mi>B</mi><mi>C</mi></mrow><mrow><mn>2</mn><mi>sin</mi><mfenced><mi>A</mi></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>6</mn><mrow><mn>2</mn><mo>.</mo><mi>sin</mi><mfenced><mrow><mn>120</mn><mo>&#176;</mo></mrow></mfenced></mrow></mfrac><mo>=</mo><mn>2</mn><msqrt><mn>3</mn></msqrt><mo>&#8776;</mo><mn>3</mn></math></p> <p>Vậy b&aacute;n k&iacute;nh đường trong ngoại tiếp tam gi&aacute;c ABC l&agrave; R &asymp; 3.</p> <p>c) Diện t&iacute;ch tam gi&aacute;c ABC l&agrave;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>A</mi><mi>B</mi><mo>.</mo><mi>A</mi><mi>C</mi><mo>.</mo><mi>sin</mi><mfenced><mi>A</mi></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>3</mn><mo>.</mo><mn>4</mn><mo>.</mo><mi>sin</mi><mfenced><mrow><mn>120</mn><mo>&#176;</mo></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>3</mn><msqrt><mn>3</mn></msqrt><mo>&#160;</mo><mo>&#8776;</mo><mo>&#160;</mo><mn>5</mn></math></p> <p>d) Kẻ đường cao AH</p> <p>Ta c&oacute; diện t&iacute;ch tam gi&aacute;c ABC l&agrave;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>A</mi><mi>H</mi><mo>.</mo><mi>B</mi><mi>C</mi><mo>&#160;</mo><mo>&#8658;</mo><mo>&#160;</mo><mi>A</mi><mi>H</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>2</mn><mi>S</mi></mrow><mrow><mi>B</mi><mi>C</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow><mn>6</mn></mfrac><mo>&#160;</mo><mo>&#8776;</mo><mo>&#160;</mo><mn>2</mn></math></p> <p>e) + Ta c&oacute;:&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mfenced open="|" close="|"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover></mfenced><mo>.</mo><mfenced open="|" close="|"><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mfenced><mo>.</mo><mi>cos</mi><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mi>A</mi><mi>B</mi><mo>.</mo><mi>A</mi><mi>C</mi><mo>.</mo><mi>cos</mi><mfenced><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mn>3</mn><mo>.</mo><mn>4</mn><mo>.</mo><mi>cos</mi><mfenced><mrow><mn>120</mn><mo>&#176;</mo></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>-</mo><mn>6</mn></math></p> <p>Do đ&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>-</mo><mn>6</mn></math></p> <p>+ Do M l&agrave; trung điểm của BC n&ecirc;n ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>&#8658;</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced></math></p> <p>Khi đ&oacute;:&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mo>.</mo><mfenced><mrow><mover><mrow><mi>B</mi><mi>A</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mo>.</mo><mfenced><mrow><mfenced><mrow><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mo>&#160;</mo><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mo>.</mo><mfenced><mrow><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>-</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><msup><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mn>2</mn></msup><mo>-</mo><msup><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mn>2</mn></msup></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi>A</mi><mi>C</mi><mo>-</mo><mi>A</mi><mi>B</mi></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>4</mn><mo>-</mo><mn>3</mn></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
Xem lời giải bài tập khác cùng bài