Hướng dẫn giải Bài 7 (Trang 100, SGK Toán 10, Bộ Cánh Diều mới nhất, Tập 1)
<p><strong>Bài 7 (Trang 100, SGK Toán 10, Bộ Cánh Diều mới nhất, Tập 1)</strong></p>
<p>Chứng minh:</p>
<p>a) Nếu ABCD là hình bình hành thì <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover><mrow><mo> </mo><mi>A</mi><mi>D</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover><mrow><mo> </mo><mi>C</mi><mi>E</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mover><mrow><mo> </mo><mi>A</mi><mi>E</mi></mrow><mo>→</mo></mover><mo> </mo></math>với E là điểm bất kì; </p>
<p>b) Nếu I là trung điểm của đoạn thẳng AB thì <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>A</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mo> </mo><mi>M</mi><mi>B</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mo> </mo><mn>2</mn><mover><mrow><mi>I</mi><mi>N</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mn>2</mn><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>→</mo></mover></math> với M, N là hai điểm bất kì; </p>
<p>c) Nếu G là trọng tâm của tam giác ABC thì <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>A</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mo> </mo><mi>M</mi><mi>B</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mo> </mo><mi>M</mi><mi>C</mi><mo> </mo></mrow><mo>→</mo></mover><mo>-</mo><mo> </mo><mn>3</mn><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mn>3</mn><mover><mrow><mi>N</mi><mi>G</mi></mrow><mo>→</mo></mover></math> với M, N là hai điểm bất kì. </p>
<p><span style="text-decoration: underline;"><em><strong>Hướng dẫn giải:</strong></em></span></p>
<p>a) </p>
<p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/11072022/bai-7-trand-100-toan-lop-10-tap-1-1-ZDvhzQ.png" /></p>
<p>Vì ABCD là hình bình hành nên <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>C</mi><mo> </mo></mrow><mo>→</mo></mover><mo>=</mo><mover><mrow><mo> </mo><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mo> </mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>→</mo></mover></math></p>
<p>Với E là điểm bất kì ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover><mrow><mo> </mo><mi>A</mi><mi>D</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover><mrow><mo> </mo><mi>C</mi><mi>E</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mover><mrow><mo> </mo><mi>A</mi><mi>C</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mo> </mo><mi>C</mi><mi>E</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mover><mrow><mo> </mo><mi>A</mi><mi>E</mi></mrow><mo>→</mo></mover></math></p>
<p>Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mi>C</mi><mi>E</mi></mrow><mo>→</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>E</mi></mrow><mo>→</mo></mover></math> với E là điểm bất kì.</p>
<p>b) </p>
<p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/11072022/bai-7-trand-100-toan-lop-10-tap-1-2-l6Nta9.png" /></p>
<p>VI I là trung điểm của AB nên với điểm M bất kì ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>A</mi></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mi>M</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>=</mo><mn>2</mn><mover><mrow><mi>M</mi><mi>I</mi></mrow><mo>→</mo></mover></math></p>
<p>Do đó, với điểm N bất kì, ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>A</mi></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mi>M</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>+</mo><mn>2</mn><mover><mrow><mi>I</mi><mi>N</mi></mrow><mo>→</mo></mover><mo>=</mo><mn>2</mn><mover><mrow><mi>M</mi><mi>I</mi></mrow><mo>→</mo></mover><mo>+</mo><mn>2</mn><mover><mrow><mi>N</mi><mi>I</mi></mrow><mo>→</mo></mover><mo>=</mo><mn>2</mn><mfenced><mrow><mover><mrow><mi>M</mi><mi>I</mi></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mi>N</mi><mi>I</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo>=</mo><mn>2</mn><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>→</mo></mover></math></p>
<p>Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>A</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mo> </mo><mi>M</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mo> </mo><mn>2</mn><mover><mrow><mi>I</mi><mi>N</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mn>2</mn><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>→</mo></mover></math> với M, N là 2 điểm bất kì.</p>
<p>c)</p>
<p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/11072022/bai-7-trand-100-toan-lop-10-tap-1-3-NQ3q4B.png" /></p>
<p>Do G là trọng tâm của tam giác ABC với điểm M bất kì ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>A</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mo> </mo><mi>M</mi><mi>B</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mo> </mo><mi>M</mi><mi>C</mi></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mn>3</mn><mover><mrow><mi>M</mi><mi>G</mi></mrow><mo>→</mo></mover></math></p>
<p>Khi đó với điểm B bất kì ta có:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>A</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mo> </mo><mover><mrow><mi>M</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover><mrow><mo> </mo><mi>M</mi><mi>C</mi><mo> </mo></mrow><mo>→</mo></mover><mo>-</mo><mo> </mo><mn>3</mn><mover><mrow><mi>M</mi><mi>N</mi><mo> </mo></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mn>3</mn><mover><mrow><mi>M</mi><mi>G</mi></mrow><mo>→</mo></mover><mo> </mo><mo>-</mo><mo> </mo><mn>3</mn><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>→</mo></mover><mspace linebreak="newline"/><mo>=</mo><mo> </mo><mn>3</mn><mfenced><mrow><mover><mrow><mi>M</mi><mi>G</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mo> </mo><mfenced><mrow><mo>-</mo><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>→</mo></mover></mrow></mfenced></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>3</mn><mfenced><mrow><mover><mrow><mi>M</mi><mi>G</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mo> </mo><mi>N</mi><mi>M</mi></mrow><mo>→</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo> </mo><mn>3</mn><mfenced><mrow><mover><mrow><mi>N</mi><mi>M</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover><mrow><mo> </mo><mi>M</mi><mi>G</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mn>3</mn><mover><mrow><mi>N</mi><mi>G</mi></mrow><mo>→</mo></mover></math></p>
<p>Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>A</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mo> </mo><mover><mrow><mi>M</mi><mi>B</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mo> </mo><mi>M</mi><mi>C</mi><mo> </mo></mrow><mo>→</mo></mover><mo>-</mo><mo> </mo><mn>3</mn><mover><mrow><mi>M</mi><mi>N</mi><mo> </mo></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mn>3</mn><mover><mrow><mi>N</mi><mi>G</mi></mrow><mo>→</mo></mover></math> với M, N là 2 điểm bất kì.</p>