Bài 8: Đối Xứng Tâm
Hướng dẫn giải Bài 52 (Trang 96 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho h&igrave;nh b&igrave;nh h&agrave;nh&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-6" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>. Gọi&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math></span></span>&nbsp;l&agrave; điểm đối xứng với&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-10" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-11" class="mjx-mrow"><span id="MJXc-Node-12" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>&nbsp;qua điểm&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-13" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-14" class="mjx-mrow"><span id="MJXc-Node-15" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span></span></span>, gọi&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math></span></span>&nbsp;l&agrave; điểm đối xứng với&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi></math></span></span>qua điểm&nbsp;<span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-22" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-23" class="mjx-mrow"><span id="MJXc-Node-24" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span></span>. Chứng minh rằng điểm&nbsp;<span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-25" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-26" class="mjx-mrow"><span id="MJXc-Node-27" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span></span></span></span>&nbsp;đối xứng với điểm&nbsp;<span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math></span></span>&nbsp;qua điểm&nbsp;<span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-31" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-32" class="mjx-mrow"><span id="MJXc-Node-33" class="mjx-mi"></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math></span></span>.</p> <p>Lời giải chi tiết</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/04072022/b52-trand-96-sdk-toan-8-t-1-c2-AmRP1G.jpg" /><br />V&igrave; ABCD l&agrave; h&igrave;nh b&igrave;nh h&agrave;nh (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>A</mi><mi mathvariant="normal">D</mi><mo>/</mo><mo>/</mo><mi>B</mi><mi>C</mi><mo>,</mo><mpadded><mi>A</mi></mpadded><mi mathvariant="normal">B</mi><mo>/</mo><mo>/</mo><mi>D</mi><mi>C</mi><mo>,</mo><mi>A</mi><mi mathvariant="normal">D</mi><mo>=</mo><mi>B</mi><mi>C</mi><mo>,</mo><mpadded><mi>A</mi></mpadded><mi mathvariant="normal">B</mi><mo>=</mo><mi>D</mi><mi>C</mi></mstyle></math> (t&iacute;nh chất h&igrave;nh b&igrave;nh h&agrave;nh)<br />M&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>&#8712;</mo><mi>A</mi><mo>&#8290;</mo><mi mathvariant="normal">D</mi></math> (giả thiết) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>A</mi><mi>E</mi><mo>/</mo><mo>/</mo><mi>B</mi><mi>C</mi></mstyle></math><br />V&igrave; E l&agrave; điểm đối xứng với D qua điểm A (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>A</mi><mo>&#8290;</mo><mi>E</mi><mo>=</mo><mi>A</mi><mo>&#8290;</mo><mi mathvariant="normal">D</mi></mstyle></math> (t&iacute;nh chất hai điểm đối xứng qua 1 điểm)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>A</mi><mo>&#8290;</mo><mi>E</mi><mo>=</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> (c&ugrave;ng bằng AD )<br />Kết hợp với AE//BC (chứng minh tr&ecirc;n)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo></mstyle></math> Tứ gi&aacute;c ACBE l&agrave; h&igrave;nh b&igrave;nh h&agrave;nh (dấu hiệu nhận biết h&igrave;nh b&igrave;nh h&agrave;nh).<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>B</mi><mi>E</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>C</mi><mo>,</mo><mi>B</mi><mi>E</mi><mo>=</mo><mi>A</mi><mi>C</mi></mstyle></math> (1) (t&iacute;nh chất h&igrave;nh b&igrave;nh h&agrave;nh)<br />Ta c&oacute;: AB//DC (chứng minh tr&ecirc;n) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>A</mi><mi>B</mi><mo>/</mo><mo>/</mo><mi>C</mi><mi>F</mi></mstyle></math><br />V&igrave; F l&agrave; điểm đối xứng với D qua điểm C (giả thiết)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>=</mo><mi>C</mi><mo>&#8290;</mo><mi>F</mi></mstyle></math> (t&iacute;nh chất hai điểm đối xứng qua 1 điểm)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>=</mo><mi>C</mi><mo>&#8290;</mo><mi>F</mi></mstyle></math> (c&ugrave;ng bằng DC )<br />Kết hợp với AB//CF (chứng minh tr&ecirc;n)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo></mstyle></math> Tứ gi&aacute;c ACFB l&agrave; h&igrave;nh b&igrave;nh h&agrave;nh (dấu hiệu nhận biết h&igrave;nh b&igrave;nh h&agrave;nh).<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>B</mi><mi>F</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>C</mi><mo>,</mo><mi>B</mi><mi>F</mi><mo>=</mo><mi>A</mi><mi>C</mi></mstyle></math> (2) (t&iacute;nh chất h&igrave;nh b&igrave;nh h&agrave;nh)<br />Từ (1) v&agrave; (2) suy ra BE v&agrave; BF c&ugrave;ng song song với AC v&agrave; c&ugrave;ng đi qua điểm B n&ecirc;n theo ti&ecirc;n đề ơclit BE tr&ugrave;ng BF hay B, E, F thẳng h&agrave;ng.<br />Lại c&oacute;: BE=BF (c&ugrave;ng bằng AC) do đ&oacute; B l&agrave; trung điểm của EF<br />Vậy E đối xứng với F qua B.<br /><br /><br /></p> <p>&nbsp;</p>
Xem lời giải bài tập khác cùng bài