Bài 8: Đối Xứng Tâm
Hướng dẫn giải Bài 54 (Trang 96 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho g&oacute;c vu&ocirc;ng&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>O</mi><mi>y</mi></math></span></span>, điểm&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-6" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-7" class="mjx-mrow"><span id="MJXc-Node-8" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span></span></span>&nbsp;nằm trong g&oacute;c đ&oacute;. Gọi&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math></span></span>&nbsp;l&agrave; điểm đối xứng với&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-12" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-13" class="mjx-mrow"><span id="MJXc-Node-14" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span></span></span>&nbsp;qua&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>x</mi></math></span></span>, gọi&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-19" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-20" class="mjx-mrow"><span id="MJXc-Node-21" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span></span>&nbsp;l&agrave; điểm đối xứng với&nbsp;<span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math></span></span>&nbsp;qua&nbsp;<span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>y</mi></math></span></span>. Chứng minh rằng điểm&nbsp;<span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-29" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-30" class="mjx-mrow"><span id="MJXc-Node-31" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span></span></span>&nbsp;đối xứng với điểm&nbsp;<span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-32" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-33" class="mjx-mrow"><span id="MJXc-Node-34" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span></span> qua <span id="MathJax-Element-11-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi></math></span></span>.</p> <p>Lời giải chi tiết</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/04072022/b54-trand-96-sdk-toan-8-t-1-c2-Wfll6f.jpg" /></p> <p>A đối xứng với B qua Ox (giả thiết) n&ecirc;n Ox l&agrave; đường trung trực của AB<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>O</mi><mo>&#8290;</mo><mi>A</mi><mo>=</mo><mi>O</mi><mo>&#8290;</mo><mi>B</mi></mstyle></math> (t&iacute;nh chất đường trung trực của đoạn thẳng) (1)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>O</mi><mo>&#8290;</mo><mi>B</mi></mstyle></math> c&acirc;n tại O (dấu hiệu nhận biết tam gi&aacute;c c&acirc;n)<br />Do đ&oacute; Ox vừa l&agrave; đường trung trự'c đồng thời l&agrave; ph&acirc;n gi&aacute;c của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>O</mi><mo>&#8290;</mo><mi>B</mi></mstyle></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><msub><mover accent="true"><mi>O</mi><mo>^</mo></mover><mn>1</mn></msub><mo>=</mo><msub><mover accent="true"><mi>O</mi><mo>^</mo></mover><mn>2</mn></msub></mstyle></math> (3)<br />A đối xứng với C qua Oy (giả thiết) n&ecirc;n Oy l&agrave; đường trung trực của AC<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>O</mi><mo>&#8290;</mo><mi>A</mi><mo>=</mo><mi>O</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> (t&iacute;nh chất đường trung trực của đoạn thẳng) (2)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>O</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> c&acirc;n tại O (dấu hiệu nhận biết tam gi&aacute;c c&acirc;n)<br />Do đ&oacute; Oy vừa l&agrave; đường trung trực đồng thời l&agrave; ph&acirc;n gi&aacute;c của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>O</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><msub><mover accent="true"><mi>O</mi><mo>^</mo></mover><mn>3</mn></msub><mo>=</mo><msub><mover accent="true"><mi>O</mi><mo>^</mo></mover><mn>4</mn></msub></mstyle></math> (4)<br />Từ (3) v&agrave; (4) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><msub><mover accent="true"><mi>O</mi><mo>^</mo></mover><mn>1</mn></msub><mo>+</mo><msub><mover accent="true"><mi>O</mi><mo>^</mo></mover><mn>2</mn></msub><mo>+</mo><msub><mover accent="true"><mi>O</mi><mo>^</mo></mover><mn>3</mn></msub><mo>+</mo><msub><mover accent="true"><mi>O</mi><mo>^</mo></mover><mn>4</mn></msub></mstyle></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>=</mo><mn>2</mn><mo>&#8290;</mo><msub><mover accent="true"><mi>O</mi><mo>^</mo></mover><mn>2</mn></msub><mo>+</mo><mn>2</mn><mo>&#8290;</mo><msub><mover accent="true"><mi>O</mi><mo>^</mo></mover><mn>3</mn></msub><mo>=</mo><mn>2</mn><mo>&#8290;</mo><mrow><mo>(</mo><msub><mover accent="true"><mi>O</mi><mo>^</mo></mover><mn>2</mn></msub><mo>+</mo><msub><mover accent="true"><mi>O</mi><mo>^</mo></mover><mn>3</mn></msub><mo>)</mo></mrow><mo>=</mo><mn>2</mn><mo>&#8290;</mo><mover accent="true"><mrow><mi>x</mi><mo>&#8290;</mo><mi>O</mi><mo>&#8290;</mo><mi>y</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>2.90</mn><mn>0</mn></msup><mo>=</mo><msup><mn>180</mn><mn>0</mn></msup></mstyle></math><br />Do đ&oacute; B, O, C thẳng h&agrave;ng (* *)<br />Từ (1) v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mi>O</mi><mi>B</mi><mo>=</mo><mi>O</mi><mi>C</mi><mrow><mo>(</mo><mmultiscripts><mo>)</mo><mprescripts/><none/><mo>*</mo></mmultiscripts></mrow></math><br />Từ (*) v&agrave; (* *) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>B</mi></mstyle></math> đối xứng với C qua O.</p> <p>&nbsp;</p>
Xem lời giải bài tập khác cùng bài