Bài 8. Các trường hợp đồng dạng của tam giác vuông
Hướng dẫn giải Bài 47 (Trang 84 SGK Toán Hình học 8, Tập 2)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Tam gi&aacute;c ABC c&oacute; độ d&agrave;i c&aacute;c cạnh l&agrave;&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">3</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">m</span></span><span id="MJXc-Node-6" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-7" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">4</span></span><span id="MJXc-Node-8" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">m</span></span><span id="MJXc-Node-10" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-11" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">5</span></span><span id="MJXc-Node-12" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-13" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">m</span></span></span></span></span>. Tam gi&aacute;c A'B'C' đồng dạng với tam gi&aacute;c ABC v&agrave; c&oacute; diện t&iacute;ch l&agrave;&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;54&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;"><span id="MJXc-Node-14" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-15" class="mjx-mrow"><span id="MJXc-Node-16" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">54</span></span><span id="MJXc-Node-17" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-18" class="mjx-texatom"><span id="MJXc-Node-19" class="mjx-mrow"><span id="MJXc-Node-20" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-21" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">m</span></span></span><span class="mjx-sup"><span id="MJXc-Node-22" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">2</span></span></span></span></span></span></span></span></span></p> <p>T&iacute;nh độ d&agrave;i c&aacute;ch cạnh của tam gi&aacute;c&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msup&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>A</mi><mo>&prime;</mo></msup><msup><mi>B</mi><mo>&prime;</mo></msup><msup><mi>C</mi><mo>&prime;</mo></msup></math></span></span>.</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><strong class="content_detail"><img src="https://img.loigiaihay.com/picture/2018/0718/b47-trang-84-sgk-toan-8-t2-c2.jpg" /></strong></p> <p><span class="content_detail">X&eacute;t <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> c&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>=</mo><mpadded><mn>3</mn></mpadded><mo>&#8290;</mo><mi>cm</mi><mo>,</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>=</mo><mpadded><mn>4</mn></mpadded><mo>&#8290;</mo><mi>cm</mi><mo>,</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>=</mo><mpadded><mn>5</mn></mpadded><mo>&#8290;</mo><mi>cm</mi></mstyle></math>.<br />Ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mn>3</mn><mn>2</mn></msup><mo>+</mo><msup><mn>4</mn><mn>2</mn></msup><mo>=</mo><mn>25</mn><mo>=</mo><msup><mn>5</mn><mn>2</mn></msup><mo>&#8658;</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> vu&ocirc;ng tại A (định l&iacute; Pitago đảo)<br />N&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8901;</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8901;</mo><mn>3</mn><mo>&#8901;</mo><mn>4</mn><mo>=</mo><mpadded><mn>6</mn></mpadded><mo>&#8290;</mo><msup><mi>cm</mi><mn>2</mn></msup></mstyle></math><br />v&igrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>~</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>C</mi><mo>'</mo></msup><mo>&#8290;</mo><mrow><mo>(</mo><mi>gt</mi><mo>)</mo></mrow></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow><mrow><msup><mi>B</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>C</mi><mo>'</mo></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi></mrow><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>C</mi><mo>'</mo></msup></mrow></mfrac></mstyle></math> (t&iacute;nh chất hai tam gi&aacute;c đồng dạng)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mfrac><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow></msub><msub><mi>S</mi><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>C</mi><mo>'</mo></msup></mrow></msub></mfrac><mo>=</mo><msup><mrow><mo>(</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup></mrow></mfrac><mo>)</mo></mrow><mn>2</mn></msup></mstyle></math> (tỉ số diện t&iacute;ch bằng b&igrave;nh phương tỉ số đồng dạng)<br />Do đ&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mn>6</mn><mn>54</mn></mfrac><mo>=</mo><msup><mrow><mo>(</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup></mrow></mfrac><mo>)</mo></mrow><mn>2</mn></msup></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><msup><mrow><mo>(</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup></mrow></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>9</mn></mfrac></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup><mo>=</mo><mn>3</mn><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>=</mo><mn>3.3</mn><mo>=</mo><mpadded><mn>9</mn></mpadded><mo>&#8290;</mo><mi>cm</mi></mstyle></math></span></p> <p><span class="content_detail">Tức l&agrave; độ d&agrave;i mỗi cạnh của tam gi&aacute;c <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></math> gấp 3 lần độ d&agrave;i mỗi cạnh của cạnh của tam gi&aacute;c ABC.<br /></span><span class="content_detail">Vậy ba cạnh của tam gi&aacute;c <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>B</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>C</mi><mo>'</mo></msup><mo>&#8290;</mo><mi>l</mi><mi>&#224;</mi><mo>&#160;</mo><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mmultiscripts><mi>B</mi><none/><mo>'</mo><mprescripts/><none/><mo>'</mo></mmultiscripts><mo>=</mo><mpadded><mn>9</mn></mpadded><mo>&#8290;</mo><mi>cm</mi><mo>,</mo><msup><mi>A</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>C</mi><mo>'</mo></msup><mo>=</mo><mpadded><mn>12</mn></mpadded><mo>&#8290;</mo><mi>cm</mi><mo>,</mo><msup><mi>B</mi><mo>'</mo></msup><mo>&#8290;</mo><msup><mi>C</mi><mo>'</mo></msup><mo>=</mo><mpadded><mn>15</mn></mpadded><mo>&#8290;</mo><mi>cm</mi><mo>.</mo></math></span><strong class="content_detail"><br /></strong></p> <p><br /><br /></p>
Xem lời giải bài tập khác cùng bài