Hướng dẫn giải Bài 47 (Trang 133 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề bài</strong></p>
<p>Vẽ ba đường trung tuyến của một tam giác (h.<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>162</mn></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>162</mn></math></span></span>). Chứng minh sáu tam giác: <span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn></math>"><span id="MJXc-Node-4" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-5" class="mjx-mrow"><span id="MJXc-Node-6" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">1</span></span><span id="MJXc-Node-7" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-8" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">2</span></span><span id="MJXc-Node-9" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-10" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">3</span></span><span id="MJXc-Node-11" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-12" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">4</span></span><span id="MJXc-Node-13" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-14" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">5</span></span><span id="MJXc-Node-15" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-16" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">6</span></span></span></span></span> có diện tích bằng nhau. </p>
<p><img src="https://img.loigiaihay.com/picture/2018/0716/b47-trang-133-sgk-toan-8-t-1-c2.jpg" /></p>
<p><strong class="content_detail">Lời giải chi tiết</strong></p>
<p>Theo tính chất của trung tuyến, suy ra:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mn>1</mn></msub><mo>=</mo><msub><mi>S</mi><mn>2</mn></msub></mstyle></math> (có đáy bằng nhau và cùng chiều cao) (1)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mn>3</mn></msub><mo>=</mo><msub><mi>S</mi><mn>4</mn></msub></mstyle></math> (có đáy bằng nhau và cùng chiều cao) (2)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mn>5</mn></msub><mo>=</mo><msub><mi>S</mi><mn>6</mn></msub></mstyle></math> (có đáy bằng nhau và cùng chiều cao) (3)</p>
<p>Lại có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mn>1</mn></msub><mo>+</mo><msub><mi>S</mi><mn>2</mn></msub><mo>+</mo><msub><mi>S</mi><mn>3</mn></msub><mo>=</mo><msub><mi>S</mi><mn>4</mn></msub><mo>+</mo><msub><mi>S</mi><mn>5</mn></msub><mo>+</mo><msub><mi>S</mi><mn>6</mn></msub><mspace/><mrow><mo>(</mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow></msub><mo>)</mo></mrow></mstyle></math> (4)<br />Kết hợp (4) với (1), (2), (3) suy ra <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mn>1</mn></msub><mo>+</mo><msub><mi>S</mi><mn>1</mn></msub><mo>+</mo><msub><mi>S</mi><mn>3</mn></msub><mo>=</mo><msub><mi>S</mi><mn>4</mn></msub><mo>+</mo><msub><mi>S</mi><mn>6</mn></msub><mo>+</mo><msub><mi>S</mi><mn>6</mn></msub></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mn>2</mn><msub><mi>S</mi><mn>1</mn></msub><mo>+</mo><msub><mi>S</mi><mn>3</mn></msub><mo>=</mo><msub><mi>S</mi><mn>4</mn></msub><mo>+</mo><mn>2</mn><mpadded><msub><mi>S</mi><mn>6</mn></msub></mpadded><mspace linebreak="newline"/><mo>⇒</mo><mn>2</mn><msub><mi>S</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn><msub><mi>S</mi><mn>6</mn></msub><mrow><mo>(</mo><mi>d</mi><mi>o</mi><msub><mi>S</mi><mn>3</mn></msub><mo>=</mo><msub><mi>S</mi><mn>4</mn></msub><mo>)</mo></mrow><mi mathvariant="normal">&</mi><mspace linebreak="newline"/><mo>⇒</mo><msub><mi>S</mi><mn>1</mn></msub><mo>=</mo><msub><mi>S</mi><mn>6</mn></msub><mrow><mo>(</mo><msup><mn>4</mn><mo>'</mo></msup><mo>)</mo></mrow><mspace linebreak="newline"/><mi>V</mi><mi>à</mi><mo> </mo><msub><mi>S</mi><mn>1</mn></msub><mo>+</mo><msub><mi>S</mi><mn>2</mn></msub><mo>+</mo><msub><mi>S</mi><mn>6</mn></msub><mo>=</mo><msub><mi>S</mi><mn>3</mn></msub><mo>+</mo><msub><mi>S</mi><mn>4</mn></msub><mo>+</mo><msub><mi>S</mi><mn>5</mn></msub><mrow><mo>(</mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow></msub><mo>)</mo></mrow><mo> </mo><mo>(</mo><mn>5</mn><mo>)</mo></math></p>
<p>Kết hợp (5) với (1), (2), (3) suy ra<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mn>2</mn></msub><mo>+</mo><msub><mi>S</mi><mn>2</mn></msub><mo>+</mo><msub><mi>S</mi><mn>6</mn></msub><mo>=</mo><msub><mi>S</mi><mn>3</mn></msub><mo>+</mo><msub><mi>S</mi><mn>3</mn></msub><mo>+</mo><msub><mi>S</mi><mn>5</mn></msub></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mn>2</mn><mo>⁢</mo><msub><mi>S</mi><mn>2</mn></msub><mo>+</mo><msub><mi>S</mi><mn>6</mn></msub><mo>=</mo><mn>2</mn><mo>⁢</mo><msub><mi>S</mi><mn>3</mn></msub><mo>+</mo><msub><mi>S</mi><mn>5</mn></msub></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mn>2</mn><mo>⁢</mo><msub><mi>S</mi><mn>2</mn></msub><mo>=</mo><mn>2</mn><mo>⁢</mo><msub><mi>S</mi><mn>3</mn></msub></mstyle></math> (do <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mn>6</mn></msub><mo>=</mo><msub><mi>S</mi><mn>5</mn></msub></mstyle></math>)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><msub><mi>S</mi><mn>2</mn></msub><mo>=</mo><msub><mi>S</mi><mn>3</mn></msub><mo>⁢</mo><mrow><mo>(</mo><msup><mn>5</mn><mo>'</mo></msup><mo>)</mo></mrow></mstyle></math><br />Từ' <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>(</mo><msup><mn>4</mn><mo>'</mo></msup><mo>)</mo></mstyle></math>, (5') và kết hợp với (1),(2),(3) ta có :<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mn>1</mn></msub><mo>=</mo><msub><mi>S</mi><mn>2</mn></msub><mo>=</mo><msub><mi>S</mi><mn>3</mn></msub><mo>=</mo><msub><mi>S</mi><mn>4</mn></msub><mo>=</mo><msub><mi>S</mi><mn>5</mn></msub><mo>=</mo><msub><mi>S</mi><mn>6</mn></msub><mo>⁢</mo></math><br />Hay 6 tam giác có diện tích bằng nhau.</p>
Xem lời giải bài tập khác cùng bài