Bài 2. Quy tắc tính đạo hàm
Hướng dẫn giải Hoạt động 2 (Trang 158 SGK Toán Đại số & Giải tích 11)
<div> <p>Chứng minh khẳng định trong nhận x&eacute;t tr&ecirc;n.</p> </div> <div id="sub-question-1" class="box-question top20"> <p>Lời giải a</p> <p>Đạo h&agrave;m của h&agrave;m hằng bằng <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>:</mo><mo>&nbsp;</mo><mi>c</mi><mo>'</mo><mo>=</mo><mn>0</mn></math><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0.&lt;/mn&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>.</mn></math></span></span></p> <p><strong>Lời giải chi tiết:</strong></p> <p>H&agrave;m hằng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr;</mo><mo>∆</mo><mi>y</mi><mo>=</mo><mn>0</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr;</mo><munder><mi>lim</mi><mrow><mo>∆</mo><mi>x</mi><mo>&rarr;</mo><mn>0</mn></mrow></munder><mfrac><mrow><mo>∆</mo><mi>y</mi></mrow><mrow><mo>∆</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math></p> </div> <div id="sub-question-2" class="box-question top20"> <p>Lời giải b</p> <p>Đạo h&agrave;m của h&agrave;m số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math>&nbsp;bằng <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>:</mo><mo>&nbsp;</mo><mi>x</mi><mo>'</mo><mo>=</mo><mn>1</mn></math><span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1.&lt;/mn&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>.</mn></math></span></span></p> <p><strong>Lời giải chi tiết:</strong></p> <p>Theo định l&iacute; 1</p> <p>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math>hay&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>x</mi><mn>1</mn></msup><mo>&rArr;</mo><mi>y</mi><mo>'</mo><mo>=</mo><mfenced><msup><mi>x</mi><mn>1</mn></msup></mfenced><mo>'</mo><mo>=</mo><mn>1</mn><mo>.</mo><msup><mi>x</mi><mrow><mn>1</mn><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>.</mo><msup><mi>x</mi><mn>0</mn></msup><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>=</mo><mn>1</mn></math></p> </div>
Xem lời giải bài tập khác cùng bài