Bài 2. Quy tắc tính đạo hàm
Hướng dẫn giải Bài 3 (Trang 163 SGK Toán Đại số & Giải tích 11)
<p><span class="mce-nbsp-wrap" contenteditable="false">&nbsp;&nbsp;&nbsp;</span>T&igrave;m đạo h&agrave;m của c&aacute;c h&agrave;m số sau&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><msup><mfenced><mrow><msup><mi>x</mi><mn>7</mn></msup><mo>-</mo><mn>5</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mn>3</mn></msup><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>;</mo><mo>&#160;</mo><mi>b</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>5</mn><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mspace linebreak="newline"/><mi>c</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>;</mo><mo>&#160;</mo><mi>d</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mo>-</mo><mn>5</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mi>e</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>=</mo><msup><mfenced><mrow><mi>m</mi><mo>+</mo><mfrac><mi>n</mi><msup><mi>x</mi><mn>2</mn></msup></mfrac></mrow></mfenced><mn>3</mn></msup><mo>&#160;</mo><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>&#160;</mo><mi>l</mi><mi>&#224;</mi><mo>&#160;</mo><mi>c</mi><mi>&#225;</mi><mi>c</mi><mo>&#160;</mo><mi>h</mi><mi>&#7857;</mi><mi>n</mi><mi>g</mi><mo>&#160;</mo><mi>s</mi><mi>&#7889;</mi><mo>&#160;</mo><mo>)</mo><mspace linebreak="newline"/><mi>G</mi><mi>i</mi><mi>&#7843;</mi><mi>i</mi><mo>&#160;</mo><mspace linebreak="newline"/><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>'</mo><mo>=</mo><mn>3</mn><msup><mfenced><mrow><msup><mi>x</mi><mn>7</mn></msup><mo>-</mo><mn>5</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mn>2</mn></msup><mo>.</mo><mfenced><mrow><msup><mi>x</mi><mn>7</mn></msup><mo>-</mo><mn>5</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>3</mn><msup><mfenced><mrow><msup><mi>x</mi><mn>7</mn></msup><mo>-</mo><mn>5</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mn>7</mn><msup><mi>x</mi><mn>6</mn></msup><mo>-</mo><mn>10</mn><mi>x</mi></mrow></mfenced><mspace linebreak="newline"/><mi>b</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>'</mo><mo>=</mo><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mo>'</mo></msup><mfenced><mrow><mn>5</mn><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced><mo>+</mo><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mo>.</mo><msup><mfenced><mrow><mn>5</mn><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mo>'</mo></msup><mspace linebreak="newline"/><mo>=</mo><mn>2</mn><mi>x</mi><mfenced><mrow><mn>5</mn><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mo>+</mo><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mo>-</mo><mn>6</mn><mi>x</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mn>12</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mspace linebreak="newline"/><mi>c</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>'</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>2</mn><mi>x</mi><mn>2</mn><mi>x</mi></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mspace linebreak="newline"/><mi>d</mi><mo>&#160;</mo><mo>,</mo><mi>y</mi><mo>'</mo><mo>=</mo><mfrac><mrow><mo>-</mo><mn>5</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mn>3</mn><mo>-</mo><mn>5</mn><mi>x</mi></mrow></mfenced><mo>.</mo><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo>=</mo><mfrac><mrow><mn>5</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>2</mn></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mspace linebreak="newline"/><mi>e</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>'</mo><mo>=</mo><mn>3</mn><msup><mfenced><mrow><mi>m</mi><mo>+</mo><mfrac><mi>n</mi><msup><mi>x</mi><mn>2</mn></msup></mfrac></mrow></mfenced><mn>2</mn></msup><mo>.</mo><msup><mfenced><mrow><mi>m</mi><mo>+</mo><mfrac><mi>n</mi><msup><mi>x</mi><mn>2</mn></msup></mfrac></mrow></mfenced><mo>'</mo></msup><mo>=</mo><mo>-</mo><mfrac><mrow><mn>6</mn><mi>n</mi></mrow><msup><mi>x</mi><mn>3</mn></msup></mfrac><msup><mfenced><mrow><mi>m</mi><mo>+</mo><mfrac><mi>n</mi><msup><mi>x</mi><mn>2</mn></msup></mfrac></mrow></mfenced><mn>2</mn></msup><mspace linebreak="newline"/></math></p>
Xem lời giải bài tập khác cùng bài