Bài 1. Giới hạn của dãy số
Hướng dẫn giải Bài 7 (Trang 122 SGK Toán Đại số & Giải tích 11)
<p>T&iacute;nh c&aacute;c giới hạn sau:</p> <p>a) lim<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>n</mi><mn>3</mn></msup><mo>+</mo><mn>2</mn><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;b)&nbsp; lim<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>5</mn><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math>&nbsp;</p> <p>C) lim(<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mi>n</mi></msqrt><mo>+</mo><mn>1</mn></math>)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; d) lim<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mi>n</mi></msqrt><mo>+</mo><mi>n</mi></math></p> <p><strong>Giải:</strong></p> <p>a) lim<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>n</mi><mn>3</mn></msup><mo>+</mo><mn>2</mn><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> = lim&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>n</mi><mn>3</mn></msup><mfenced><mrow><mn>1</mn><mo>+</mo><mfrac><mn>2</mn><mi>n</mi></mfrac><mo>-</mo><mfrac><mn>1</mn><msup><mi>n</mi><mn>2</mn></msup></mfrac><mo>+</mo><mfrac><mn>1</mn><msup><mi>n</mi><mn>3</mn></msup></mfrac></mrow></mfenced><mo>=</mo><mo>&#160;</mo><mo>+</mo><mo>&#8734;</mo></math></p> <p>(V&igrave; lim<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>n</mi><mrow><mn>3</mn><mo>&#160;</mo></mrow></msup><mo>=</mo><mo>-</mo><mo>&#8734;</mo></math> v&agrave; lim<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>+</mo><mfrac><mn>2</mn><mi>n</mi></mfrac><mo>-</mo><mfrac><mn>1</mn><msup><mi>n</mi><mn>2</mn></msup></mfrac><mo>+</mo><mfrac><mn>1</mn><msup><mi>n</mi><mn>3</mn></msup></mfrac></mrow></mfenced><mo>=</mo><mn>1</mn><mo>&#62;</mo><mn>0</mn></math>)</p> <p>b)<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>5</mn><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math> = lim&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>n</mi><mn>2</mn></msup><mfenced><mrow><mo>-</mo><mn>1</mn><mo>&#160;</mo><mo>+</mo><mfrac><mn>5</mn><mi>n</mi></mfrac><mo>&#160;</mo><mo>-</mo><mfrac><mn>2</mn><msup><mi>n</mi><mn>2</mn></msup></mfrac></mrow></mfenced><mo>=</mo><mo>&#160;</mo><mo>-</mo><mo>&#8734;</mo></math></p> <p>(V&igrave; lim <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>n</mi><mn>2</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mo>&#8734;</mo></math> v&agrave; lim<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>1</mn><mo>&#160;</mo><mo>+</mo><mfrac><mn>5</mn><mi>n</mi></mfrac><mo>&#160;</mo><mo>-</mo><mfrac><mn>2</mn><msup><mi>n</mi><mn>2</mn></msup></mfrac></mrow></mfenced><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>&#60;</mo><mn>0</mn></math>)</p> <p>c) lim&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mi>n</mi></msqrt><mo>+</mo><mn>1</mn></math> = lim<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mi>n</mi></mrow><mrow><mo>(</mo><msqrt><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mi>n</mi><mo>+</mo><mi>n</mi></msqrt><mo>)</mo></mrow></mfrac></math>= lim <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mi>n</mi></mrow><mrow><mi>n</mi><mfenced><mrow><mn>1</mn><mo>&#160;</mo><mo>-</mo><mstyle displaystyle="true"><mfrac><mn>1</mn><mi>n</mi></mfrac></mstyle><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>l</mi><mi>i</mi><mi>m</mi><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mfenced><mrow><mn>1</mn><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p> <p>d) lim<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mi>n</mi></msqrt><mo>+</mo><mi>n</mi></math>=lim n<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mo>&#160;</mo><mo>+</mo><mo>&#8734;</mo></math></p> <p>(V&igrave; lim n = +<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8734;</mo></math> v&agrave; lim&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced></math>&nbsp; = 2&gt;0)</p>
Hướng dẫn Giải Bài 7abc (trang 122, SGK Toán Đại số & Giải Tích 11)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 7abc (trang 122, SGK Toán Đại số & Giải Tích 11)
GV: GV colearn