Bài 3: Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm
<span data-v-a7c68f28="">Hướng dẫn Giải Luyện tập - Vận dụng 1 (Trang 38 SGK Toán 10, Bộ Cánh diều, Tập 2)</span>
<p><strong>Luyện tập - Vận dụng 1 (Trang 38 SGK To&aacute;n 10, Bộ C&aacute;nh diều, Tập 2)</strong></p> <p>Mẫu số liệu về thời gian (đơn vị: gi&acirc;y) chạy cự li 500 m của 5 người l&agrave;:</p> <p style="text-align: left;" align="center">55,2 58,8 62,4 54 59,4 (5)</p> <p>Mẫu số liệu về thời gian (đơn vị: gi&acirc;y) chạy cự li 1 500 m của 5 người đ&oacute; l&agrave;:</p> <p style="text-align: left;" align="center">271,2 261 276 282 270 (6)</p> <p>T&iacute;nh phương sai của mẫu (5) v&agrave; mẫu (6). Từ đ&oacute; cho biết cự li chạy n&agrave;o c&oacute; kết quả đồng đều hơn.</p> <p><em><span style="text-decoration: underline;"><strong>Hướng dẫn giải</strong></span></em></p> <p>+) Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>x</mi><mn>5</mn></msub><mo>&macr;</mo></mover><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>57</mn><mo>,</mo><mn>96</mn><mo>;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mover><msub><mi>x</mi><mn>6</mn></msub><mo>&macr;</mo></mover><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>272</mn><mo>,</mo><mn>04</mn></math></p> <p>+) Vậy phương sai của mẫu (5) v&agrave; (6) l&agrave;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>s</mi><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow><mn>2</mn></msubsup><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mfrac><mrow><msup><mfenced><mrow><mn>55</mn><mo>,</mo><mn>2</mn><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mover><msub><mi>x</mi><mn>5</mn></msub><mo>&macr;</mo></mover></mrow></mfenced><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mfenced><mrow><mn>58</mn><mo>,</mo><mn>8</mn><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mover><msub><mi>x</mi><mn>5</mn></msub><mo>&macr;</mo></mover></mrow></mfenced><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mfenced><mrow><mn>62</mn><mo>,</mo><mn>4</mn><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mover><msub><mi>x</mi><mn>5</mn></msub><mo>&macr;</mo></mover></mrow></mfenced><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mfenced><mrow><mn>54</mn><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mover><msub><mi>x</mi><mn>5</mn></msub><mo>&macr;</mo></mover></mrow></mfenced><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mfenced><mrow><mn>59</mn><mo>,</mo><mn>4</mn><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mover><msub><mi>x</mi><mn>5</mn></msub><mo>&macr;</mo></mover></mrow></mfenced><mn>2</mn></msup></mrow><mn>5</mn></mfrac><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>9</mn><mo>,</mo><mn>16</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>s</mi><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow><mn>2</mn></msubsup><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mfrac><mrow><msup><mfenced><mrow><mn>271</mn><mo>,</mo><mn>2</mn><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mover><msub><mi>x</mi><mn>6</mn></msub><mo>&macr;</mo></mover></mrow></mfenced><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><msup><mfenced><mrow><mn>261</mn><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mover><msub><mi>x</mi><mn>6</mn></msub><mo>&macr;</mo></mover></mrow></mfenced><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mfenced><mrow><mn>276</mn><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mover><msub><mi>x</mi><mn>6</mn></msub><mo>&macr;</mo></mover></mrow></mfenced><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mfenced><mrow><mn>282</mn><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mover><msub><mi>x</mi><mn>6</mn></msub><mo>&macr;</mo></mover></mrow></mfenced><mn>2</mn></msup><mo>&nbsp;</mo><mo>+</mo><mo>&nbsp;</mo><msup><mfenced><mrow><mn>270</mn><mo>&nbsp;</mo><mo>-</mo><mo>&nbsp;</mo><mover><msub><mi>x</mi><mn>6</mn></msub><mo>&macr;</mo></mover></mrow></mfenced><mn>2</mn></msup></mrow><mn>5</mn></mfrac><mo>&nbsp;</mo><mo>=</mo><mo>&nbsp;</mo><mn>48</mn><mo>,</mo><mn>33</mn></math></p> <div id="box-content"> <div id="sub-question-2" class="box-question top20"> <p>Nhận x&eacute;t: Cự li chạy 500m c&oacute; kết quả đồng đều hơn.</p> </div> <div id="end_sub_question_nav"></div> </div> <p><ins id="982a9496-8c1a76b9ab4d8e1356920626d3ae545d-1-9896" class="982a9496" data-key="8c1a76b9ab4d8e1356920626d3ae545d"><ins id="982a9496-8c1a76b9ab4d8e1356920626d3ae545d-1-9896-1"></ins></ins></p> <div id="zone-la1urw9m"> <div id="share-la1urw9u"> <div id="placement-la1us83o"> <div id="banner-la1urw9m-la1us83y"> <div id="slot-1-la1urw9m-la1us83y"> <div id="ssppagebid_13423"> <div id="sspbid_2027599" class="banner1" data-ssp="sspbid_2027599" data-admssprqid="1adcc6b4-80dd-414d-9800-77fa8dab9faa141-6371178c" data-location="10" data-width="300" data-height="250"></div> </div> </div> </div> </div> </div> </div> <p>&nbsp;</p> <p>&nbsp;</p> <p><span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;msubsup&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;55&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mover&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo accent=&quot;false&quot;&gt;&amp;#x00AF;&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;58&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mover&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo accent=&quot;false&quot;&gt;&amp;#x00AF;&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;62&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mover&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo accent=&quot;false&quot;&gt;&amp;#x00AF;&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;54&lt;/mn&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mover&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo accent=&quot;false&quot;&gt;&amp;#x00AF;&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msup&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mn&gt;59&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mover&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo accent=&quot;false&quot;&gt;&amp;#x00AF;&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;16&lt;/mn&gt;&lt;/math&gt;"><span id="MJXc-Node-214" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-215" class="mjx-mrow"><span id="MJXc-Node-216" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-217" class="mjx-mi"></span></span></span></span></span></span></p>
Xem lời giải bài tập khác cùng bài