Hướng dẫn giải Bài 8 (Trang 98, SGK Toán 10, Bộ Cánh Diều mới nhất, Tập 1)
<div data-v-4ef816dc=""><strong>Bài 8 (Trang 98, SGK Toán 10, Bộ Cánh Diều mới nhất, Tập 1)</strong></div>
<p>Cho tam giác ABC có AB = 2, AC = 3, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mn>60</mn><mo>°</mo></math>. Gọi M là trung điểm của BC. Điểm D thỏa mãn <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>D</mi><mo> </mo></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mfrac><mn>7</mn><mn>12</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></math></p>
<p>a) Tính <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></math>.</p>
<p>b) BIểu diễn <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>→</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>→</mo></mover></math> theo <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>,</mo><mo> </mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></math>.</p>
<p>c) Chứng minh AM ⊥ BD. </p>
<p><span style="text-decoration: underline;"><em><strong>Hướng dẫn giải:</strong></em></span></p>
<p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/07072022/bai-8-trand-98-toan-lop-10-tap-1-iJAPiR.png" /></p>
<p>a) Ta có: </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover><mo>=</mo><mfenced open="|" close="|"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover></mfenced><mo>.</mo><mfenced open="|" close="|"><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mfenced><mo>.</mo><mi>cos</mi><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>,</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mi>A</mi><mi>B</mi><mo>.</mo><mi>A</mi><mi>C</mi><mo>.</mo><mi>cos</mi><mfenced><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover></mfenced><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>.</mo><mi>cos</mi><mfenced><mrow><mn>60</mn><mo>°</mo></mrow></mfenced><mo>=</mo><mn>3</mn></math></p>
<p>b) Do M là trung điểm của BC nên với điểm A ta có:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mo> </mo><mi>A</mi><mi>C</mi><mo> </mo></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mn>2</mn><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>→</mo></mover><mspace linebreak="newline"/><mo>⇒</mo><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>+</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>B</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></math></p>
<p>Do đó: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>B</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></math></p>
<p>+ Ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mover><mrow><mo> </mo><mi>B</mi><mi>A</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mo> </mo><mover><mrow><mi>A</mi><mi>D</mi><mo> </mo></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mfenced><mrow><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo> </mo><mo>+</mo><mo> </mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>→</mo></mover></math></p>
<p>Mà <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>D</mi><mo> </mo></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mfrac><mn>7</mn><mn>12</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></math></p>
<p>Nên <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mo> </mo><mfenced><mrow><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo> </mo><mo>+</mo><mo> </mo><mfrac><mn>7</mn><mn>12</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi><mo> </mo></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mo> </mo><mfrac><mn>7</mn><mn>12</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></math></p>
<p>Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>→</mo></mover><mo>=</mo><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>+</mo><mfrac><mn>7</mn><mn>12</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></math></p>
<p>c) Ta có: </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>D</mi><mo> </mo></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mo>.</mo><mfenced><mrow><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>+</mo><mfrac><mn>7</mn><mn>12</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo> </mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></mfrac><msup><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mn>2</mn></msup><mo> </mo><mo>+</mo><mo> </mo><mfrac><mn>7</mn><mn>24</mn></mfrac><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>B</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mo> </mo><mfrac><mn>7</mn><mn>24</mn></mfrac><msup><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>→</mo></mover><mn>2</mn></msup><mspace linebreak="newline"/><mo>=</mo><mo> </mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mi>A</mi><msup><mi>B</mi><mn>2</mn></msup><mo> </mo><mo>+</mo><mo> </mo><mfrac><mn>7</mn><mn>24</mn></mfrac><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi><mo> </mo></mrow><mo>→</mo></mover><mo>-</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi><mo> </mo></mrow><mo>→</mo></mover><mo>+</mo><mo> </mo><mfrac><mn>7</mn><mn>24</mn></mfrac><mi>A</mi><msup><mi>C</mi><mn>2</mn></msup><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mo>.</mo><msup><mn>2</mn><mn>2</mn></msup><mo> </mo><mo>+</mo><mo> </mo><mfrac><mn>7</mn><mn>24</mn></mfrac><mo>.</mo><mn>3</mn><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>3</mn><mo> </mo><mo>+</mo><mo> </mo><mfrac><mn>7</mn><mn>24</mn></mfrac><mo>.</mo><msup><mn>3</mn><mn>2</mn></msup><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn></math></p>
<p>Do đó: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>→</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>D</mi><mo> </mo></mrow><mo>→</mo></mover><mo>=</mo><mo> </mo><mn>0</mn></math></p>
<p>Vậy AM ⊥ BD.</p>