Bài 6: Tích vô hướng của hai vectơ
Hướng dẫn giải Bài 8 (Trang 98, SGK Toán 10, Bộ Cánh Diều mới nhất, Tập 1)
<div data-v-4ef816dc=""><strong>B&agrave;i 8 (Trang 98, SGK To&aacute;n 10, Bộ C&aacute;nh Diều mới nhất, Tập 1)</strong></div> <p>Cho tam gi&aacute;c ABC c&oacute; AB = 2, AC = 3, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>60</mn><mo>&#176;</mo></math>. Gọi M l&agrave; trung điểm của BC. Điểm D thỏa m&atilde;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>D</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mfrac><mn>7</mn><mn>12</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>a) T&iacute;nh&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math>.</p> <p>b) BIểu diễn&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></math> theo&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math>.</p> <p>c) Chứng minh AM &perp; BD.&nbsp;</p> <p><span style="text-decoration: underline;"><em><strong>Hướng dẫn giải:</strong></em></span></p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/07072022/bai-8-trand-98-toan-lop-10-tap-1-iJAPiR.png" /></p> <p>a) Ta c&oacute;:&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mfenced open="|" close="|"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover></mfenced><mo>.</mo><mfenced open="|" close="|"><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mfenced><mo>.</mo><mi>cos</mi><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mi>A</mi><mi>B</mi><mo>.</mo><mi>A</mi><mi>C</mi><mo>.</mo><mi>cos</mi><mfenced><mover><mrow><mi>B</mi><mi>A</mi><mi>C</mi></mrow><mo>^</mo></mover></mfenced><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>.</mo><mi>cos</mi><mfenced><mrow><mn>60</mn><mo>&#176;</mo></mrow></mfenced><mo>=</mo><mn>3</mn></math></p> <p>b) Do M l&agrave; trung điểm của BC n&ecirc;n với điểm A ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mn>2</mn><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mspace linebreak="newline"/><mo>&#8658;</mo><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>B</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>Do đ&oacute;:&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>B</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>+ Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mover><mrow><mo>&#160;</mo><mi>B</mi><mi>A</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>D</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>M&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>D</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mfrac><mn>7</mn><mn>12</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>N&ecirc;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mfrac><mn>7</mn><mn>12</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mo>&#160;</mo><mfrac><mn>7</mn><mn>12</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>D</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mfrac><mn>7</mn><mn>12</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>c) Ta c&oacute;:&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>D</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mo>.</mo><mfenced><mrow><mo>-</mo><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>+</mo><mfrac><mn>7</mn><mn>12</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></mfrac><msup><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mfrac><mn>7</mn><mn>24</mn></mfrac><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>B</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mo>&#160;</mo><mfrac><mn>7</mn><mn>24</mn></mfrac><msup><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mn>2</mn></msup><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mi>A</mi><msup><mi>B</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mfrac><mn>7</mn><mn>24</mn></mfrac><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>-</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mo>&#160;</mo><mfrac><mn>7</mn><mn>24</mn></mfrac><mi>A</mi><msup><mi>C</mi><mn>2</mn></msup><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mo>.</mo><msup><mn>2</mn><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mfrac><mn>7</mn><mn>24</mn></mfrac><mo>.</mo><mn>3</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>3</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mfrac><mn>7</mn><mn>24</mn></mfrac><mo>.</mo><msup><mn>3</mn><mn>2</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></math></p> <p>Do đ&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>D</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mn>0</mn></math></p> <p>Vậy AM &perp; BD.</p>
Xem lời giải bài tập khác cùng bài