Bài 6: Tích vô hướng của hai vectơ
Hướng dẫn giải Bài 6 (Trang 98, SGK Toán 10, Bộ Cánh Diều mới nhất, Tập 1)
<p><strong>B&agrave;i 6 (Trang 98, SGK To&aacute;n 10, Bộ C&aacute;nh Diều mới nhất, Tập 1)</strong></p> <p>Cho tam gi&aacute;c nhọn ABC, kẻ đường cao AH. Chứng minh rằng:</p> <p>a)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover></math>;</p> <p>b)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mi>H</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math></p> <p><span style="text-decoration: underline;"><em><strong>Hướng dẫn giải:</strong></em></span></p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/07072022/bai-6-trand-98-toan-lop-10-tap-1-UlRY2g.png" /></p> <p>Tam gi&aacute;c ABC nhọn n&ecirc;n H thuộc cạnh BC</p> <p>a) Do AH l&agrave; đường cao của tam gi&aacute;c ABC n&ecirc;n AH &perp; CB.</p> <p>Do đ&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>C</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mn>0</mn><mo>&#8594;</mo></mover></math></p> <p>Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>H</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mover><mrow><mi>A</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>B</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math> (t&iacute;nh chất giao ho&aacute;n)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>C</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>=</mo><mn>0</mn></math></p> <p>Do đ&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>-</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>H</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>H</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>H</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>b) Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mo>&#160;</mo><mi>H</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mover><mrow><mo>&#160;</mo><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>B</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>-</mo><mover><mrow><mo>&#160;</mo><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>H</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover></math> (t&iacute;nh chất giao ho&aacute;n)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mover><mrow><mi>H</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>-</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mover><mrow><mi>B</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mfenced><mrow><mover><mrow><mi>A</mi><mi>B</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>+</mo><mover><mrow><mo>&#160;</mo><mi>B</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>A</mi><mi>H</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></math></p> <p>Do đ&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>-</mo><mo>&#160;</mo><mover><mrow><mi>H</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi><mo>&#160;</mo><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mover><mrow><mo>&#160;</mo><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mover><mrow><mo>&#160;</mo><mi>H</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi><mo>&#160;</mo></mrow><mo>&#8594;</mo></mover><mo>=</mo><mover><mrow><mo>&#160;</mo><mi>H</mi><mi>B</mi></mrow><mo>&#8594;</mo></mover><mo>.</mo><mover><mrow><mi>B</mi><mi>C</mi></mrow><mo>&#8594;</mo></mover></math></p>
Xem lời giải bài tập khác cùng bài