Hướng dẫn giải Bài 2 (Trang 23 SGK Vật lý 10, Bộ Chân trời sáng tạo)
<p>Bảng 3P.1 thể hiện kết quả đo đường kính của một viên bi thép bằng thước kẹp có sai số dụng cụ là 0,02 mm. Tính sai số tuyệt đối, sai số tương đối và biểu diễn kết quả phép đo có kèm theo sai số.</p>
<p><img src="https://vietjack.com/vat-li-10-ct/images/bai-2-trang-23-vat-li-10-132238.PNG" alt="Bảng 3P.1 thể hiện kết quả đo đường kính của một viên bi thép bằng thước kẹp" /></p>
<p><strong>Lời giải:</strong></p>
<table style="border-collapse: collapse; width: 100%;" border="1">
<tbody>
<tr>
<td style="width: 20%;">
<p>Lần đo</p>
</td>
<td style="width: 33.5455%;">
<p>d (mm)</p>
</td>
<td style="width: 46.3636%;"> </td>
</tr>
<tr>
<td style="width: 20%;">
<p>1</p>
</td>
<td style="width: 33.5455%;">
<p>6,32</p>
</td>
<td style="width: 46.3636%;">
<p>0,01</p>
</td>
</tr>
<tr>
<td style="width: 20%;">
<p>2</p>
</td>
<td style="width: 33.5455%;">
<p>6,32</p>
</td>
<td style="width: 46.3636%;">
<p>0,01</p>
</td>
</tr>
<tr>
<td style="width: 20%;">
<p>3</p>
</td>
<td style="width: 33.5455%;">
<p>6,32</p>
</td>
<td style="width: 46.3636%;">
<p>0,01</p>
</td>
</tr>
<tr>
<td style="width: 20%;">
<p>4</p>
</td>
<td style="width: 33.5455%;">
<p>6,32</p>
</td>
<td style="width: 46.3636%;">
<p>0,01</p>
</td>
</tr>
<tr>
<td style="width: 20%;">
<p>5</p>
</td>
<td style="width: 33.5455%;">
<p>6,34</p>
</td>
<td style="width: 46.3636%;">
<p>0,01</p>
</td>
</tr>
<tr>
<td style="width: 20%;">
<p>6</p>
</td>
<td style="width: 33.5455%;">
<p>6,34</p>
</td>
<td style="width: 46.3636%;">
<p>0,01</p>
</td>
</tr>
<tr>
<td style="width: 20%;">
<p>7</p>
</td>
<td style="width: 33.5455%;">
<p>6,32</p>
</td>
<td style="width: 46.3636%;">
<p>0,01</p>
</td>
</tr>
<tr>
<td style="width: 20%;">
<p>8</p>
</td>
<td style="width: 33.5455%;">
<p>6,34</p>
</td>
<td style="width: 46.3636%;">
<p>0,01</p>
</td>
</tr>
<tr>
<td style="width: 20%;">
<p>9</p>
</td>
<td style="width: 33.5455%;">
<p>6,32</p>
</td>
<td style="width: 46.3636%;">
<p>0,01</p>
</td>
</tr>
<tr>
<td style="width: 20%;">
<p>Trung bình</p>
</td>
<td style="width: 33.5455%;"><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>d</mi><mo>&#xAF;</mo></mover><mo>=</mo><mn>6</mn><mo>,</mo><mn>33</mn></math>"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mover"><span class="mjx-stack"><span class="mjx-over"><span id="MJXc-Node-5" class="mjx-mo"></span></span><math xmlns="http://www.w3.org/1998/Math/MathML"><menclose notation="top"><mi>d</mi></menclose></math><span class="mjx-op"><span id="MJXc-Node-4" class="mjx-mi"></span></span></span></span><span id="MJXc-Node-6" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-7" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">6</span></span><span id="MJXc-Node-8" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-9" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">33</span></span></span></span></span></td>
<td style="width: 46.3636%;"><span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 19.36px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>&#x394;</mi><mi>d</mi></mrow><mo>&#xAF;</mo></mover><mo>=</mo><mn>0</mn><mo>,</mo><mn>01</mn></math>"><span id="MJXc-Node-10" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-11" class="mjx-mrow"><span id="MJXc-Node-17" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R"><math xmlns="http://www.w3.org/1998/Math/MathML"><menclose notation="top"><mi>Δ</mi><mi>d</mi></menclose></math>=</span></span><span id="MJXc-Node-18" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">0</span></span><span id="MJXc-Node-19" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-20" class="mjx-mn MJXc-space1"><span class="mjx-char MJXc-TeX-main-R">01</span></span></span></span></span></td>
</tr>
</tbody>
</table>
<p>Giá trị trung bình: <math xmlns="http://www.w3.org/1998/Math/MathML"><menclose notation="top"><mi>d</mi></menclose><mo>=</mo><mfrac><mrow><msub><mi>d</mi><mn>1</mn></msub><mo>+</mo><msub><mi>d</mi><mn>2</mn></msub><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>+</mo><msub><mi>d</mi><mn>9</mn></msub></mrow><mn>9</mn></mfrac><mo>=</mo><mn>6</mn><mo>,</mo><mn>33</mn><mi>m</mi><mi>m</mi></math></p>
<p>Sai số tuyệt đối trung bình của phép đo là:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><menclose notation="top"><mo>△</mo><mi>d</mi></menclose><mo>=</mo><mfrac><mrow><mo>△</mo><msub><mi>d</mi><mn>1</mn></msub><mo>+</mo><mo>△</mo><msub><mi>d</mi><mn>2</mn></msub><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>+</mo><mo>△</mo><msub><mi>d</mi><mn>9</mn></msub></mrow><mn>0</mn></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mn>01</mn><mi>m</mi><mi>m</mi></math></p>
<p>Sai số tuyệt đối của phép đo: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Δ</mi><mi>d</mi><mo> </mo><mo>=</mo><mo> </mo><menclose notation="top"><mi>Δ</mi><mi>d</mi></menclose><mo> </mo><mo>+</mo><mo> </mo><mi>Δ</mi><msub><mi>d</mi><mrow><mi>d</mi><mi>c</mi></mrow></msub><mo> </mo><mo>=</mo></math> 0,01 + 0,01 = 0,02mm</p>
<p>Sai số tương đối của phép đo: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi><mi>d</mi><mo>=</mo><mfrac><mrow><mi>Δ</mi><mi>d</mi></mrow><menclose notation="top"><mi>d</mi></menclose></mfrac><mo>.</mo><mn>100</mn><mo>%</mo><mo> </mo><mo>=</mo><mfrac><mrow><mo> </mo><mn>0</mn><mo>,</mo><mn>02</mn></mrow><mrow><mn>6</mn><mo>,</mo><mn>33</mn></mrow></mfrac><mo>.</mo><mn>100</mn><mo>%</mo><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>32</mn><mo>%</mo></math></p>
<p>Kết quả phép đo: <span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 21.78px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mover accent="true"><mi>d</mi><mo>&#xAF;</mo></mover><mo>&#xB1;</mo><mi>&#x394;</mi><mi>d</mi><mo>=</mo><mn>6</mn><mo>,</mo><mn>33</mn><mo>&#xB1;</mo><mn>0</mn><mo>,</mo><mn>02</mn><mtext>&#x2009;</mtext><mi>m</mi><mi>m</mi></math>"><span id="MJXc-Node-128" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-129" class="mjx-mrow"><span id="MJXc-Node-130" class="mjx-mi"></span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><menclose notation="top"><mi>d</mi></menclose><mo>±</mo><mi>Δ</mi><mi>d</mi><mo>=</mo><mn>6</mn><mo>,</mo><mn>33</mn><mo>±</mo><mn>0</mn><mo>,</mo><mn>02</mn><mi>m</mi><mi>m</mi></math><span id="MJXc-Node-148" class="mjx-mi"></span></span></span></span></p>