Bài 8: Rút gọn biểu thức chứa căn thức bậc hai
Hướng dẫn giải Bài 65 (Trang 34 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 65 (Trang 33 SGK To&aacute;n 9, Tập 1):</strong></p> <p>R&uacute;t gọn rồi so s&aacute;nh gi&aacute; trị của M với 1, biết:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">M</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mfrac><mn>1</mn><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>-</mo><mn>1</mn></mrow></mfrac></mrow></mfenced><mo>:</mo><mfrac><mrow><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>+</mo><mn>1</mn></mrow><mrow><mi mathvariant="normal">a</mi><mo>-</mo><mn>2</mn><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>+</mo><mn>1</mn></mrow></mfrac><mo>&#160;</mo><mi>v</mi><mi>&#7899;</mi><mi>i</mi><mo>&#160;</mo><mi>a</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mi>a</mi><mo>&#160;</mo><mo>&#8800;</mo><mo>&#160;</mo><mn>1</mn><mo>.</mo></math></p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">M</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mfrac><mn>1</mn><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>-</mo><mn>1</mn></mrow></mfrac></mrow></mfenced><mo>:</mo><mfrac><mrow><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>+</mo><mn>1</mn></mrow><mrow><mi mathvariant="normal">a</mi><mo>-</mo><mn>2</mn><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mo>&#160;</mo><mfrac><mrow><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>-</mo><mn>1</mn><mo>+</mo><mi mathvariant="normal">a</mi><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow><mrow><mfenced><mrow><mi mathvariant="normal">a</mi><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow></mfenced><mfenced><mrow><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>-</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>:</mo><mfrac><mrow><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>-</mo><mn>1</mn></mrow><msup><mfenced><mrow><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mspace linebreak="newline"/><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi>a</mi><mo>-</mo><mn>1</mn></mrow><mrow><mfenced><mrow><mi>a</mi><mo>-</mo><msqrt><mi>a</mi></msqrt></mrow></mfenced><mfenced><mrow><msqrt><mi>a</mi></msqrt><mo>-</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>.</mo><mfrac><msup><mfenced><mrow><msqrt><mi>a</mi></msqrt><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mrow><msqrt><mi>a</mi></msqrt><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mfenced><msqrt><mi>a</mi></msqrt></mfenced><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><mfenced><mrow><mi>a</mi><mo>-</mo><msqrt><mi>a</mi></msqrt></mrow></mfenced><mfenced><mrow><msqrt><mi>a</mi></msqrt><mo>-</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>.</mo><mfrac><msup><mfenced><msqrt><mi>a</mi><mo>-</mo><mn>1</mn></msqrt></mfenced><mn>2</mn></msup><mrow><msqrt><mi>a</mi></msqrt><mo>+</mo><mn>1</mn></mrow></mfrac><mspace linebreak="newline"/><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mfenced><mrow><mi>a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mi>a</mi></msqrt></mrow></mfenced><mfenced><mrow><msqrt><mi>a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>1</mn></mrow></mfenced><msup><mfenced><mrow><msqrt><mi>a</mi></msqrt><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mrow><mrow><mfenced><mrow><mi>a</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mi>a</mi></msqrt></mrow></mfenced><mfenced><mrow><msqrt><mi>a</mi></msqrt><mo>&#160;</mo><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msqrt><mi>a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><msup><mfenced><mrow><msqrt><mi>a</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mrow><msup><mfenced><msqrt><mi>a</mi></msqrt></mfenced><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mi>a</mi></msqrt></mrow></mfrac><mspace linebreak="newline"/><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><msup><mfenced><mrow><msqrt><mi>a</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mrow><msqrt><mi>a</mi></msqrt><mfenced><mrow><msqrt><mi>a</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><msqrt><mi>a</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn></mrow><msqrt><mi>a</mi></msqrt></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mfrac><mn>1</mn><msqrt><mi>a</mi></msqrt></mfrac><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>1</mn></math></p> <p>Vậy M &lt; 1.</p>
Hướng dẫn Giải Bài 65 (trang 34, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 65 (trang 34, SGK Toán 9, Tập 1)
GV: GV colearn