Bài 8: Rút gọn biểu thức chứa căn thức bậc hai
Hướng dẫn giải Bài 59 (Trang 32 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 59 (Trang 32 SGK To&aacute;n 9, Tập 1):</strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>)</mo><mo>&#160;</mo><mn>5</mn><msqrt><mn>2</mn></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>4</mn><mi mathvariant="normal">b</mi><msqrt><mn>25</mn><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>5</mn><mi mathvariant="normal">a</mi><msqrt><mn>16</mn><msup><mi>ab</mi><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><msqrt><mn>9</mn><mi mathvariant="normal">a</mi></msqrt><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><mn>5</mn><mi mathvariant="normal">a</mi><msqrt><mn>64</mn><msup><mi>ab</mi><mn>3</mn></msup></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mo>.</mo><msqrt><mn>12</mn><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup><msup><mi mathvariant="normal">b</mi><mn>3</mn></msup></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mi>ab</mi><msqrt><mn>9</mn><mi>ab</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>5</mn><mi mathvariant="normal">b</mi><msqrt><mn>81</mn><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup><mi mathvariant="normal">b</mi></msqrt></math>.</p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>)</mo><mo>&#160;</mo><mn>5</mn><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>4</mn><mi mathvariant="normal">b</mi><msqrt><mn>25</mn><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>5</mn><mi mathvariant="normal">a</mi><msqrt><mn>16</mn><msup><mi>ab</mi><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><msqrt><mn>9</mn><mi mathvariant="normal">a</mi></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>5</mn><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>4</mn><mi mathvariant="normal">b</mi><mo>.</mo><mn>5</mn><mi mathvariant="normal">a</mi><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>5</mn><mi mathvariant="normal">a</mi><mo>.</mo><mn>4</mn><mi mathvariant="normal">b</mi><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><mo>.</mo><mn>3</mn><msqrt><mi mathvariant="normal">a</mi></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>5</mn><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>20</mn><mi>ab</mi><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>20</mn><mi>ab</mi><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>6</mn><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>.</mo></math></p> <p>&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><mo>&#160;</mo><mn>5</mn><mi mathvariant="normal">a</mi><msqrt><mn>64</mn><msup><mi>ab</mi><mn>3</mn></msup></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mo>.</mo><msqrt><mn>12</mn><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup><msup><mi mathvariant="normal">b</mi><mn>3</mn></msup></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mi>ab</mi><mo>.</mo><mn>3</mn><msqrt><mi>ab</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>5</mn><mi mathvariant="normal">b</mi><mo>.</mo><mn>9</mn><mi mathvariant="normal">a</mi><msqrt><mi>ab</mi></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>40</mn><mi>ab</mi><msqrt><mi>ab</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>36</mn><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup><msup><mi mathvariant="normal">b</mi><mn>3</mn></msup></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>6</mn><mi>ab</mi><msqrt><mi>ab</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>45</mn><mi>ab</mi><msqrt><mi>ab</mi></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>40</mn><mi>ab</mi><msqrt><mi>ab</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>6</mn><mi>ab</mi><msqrt><mi>ab</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>6</mn><mi>ab</mi><msqrt><mi>ab</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>45</mn><mi>ab</mi><msqrt><mi>ab</mi></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>5</mn><mi>ab</mi><msqrt><mi>ab</mi></msqrt></math></p>
Hướng dẫn Giải Bài 59 (trang 32, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 59 (trang 32, SGK Toán 9, Tập 1)
GV: GV colearn