Bài 8: Rút gọn biểu thức chứa căn thức bậc hai
Hướng dẫn giải Bài 64 (Trang 33 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 64 (Trang 33 SGK To&aacute;n 9, Tập 1):</strong></p> <p>Chứng minh c&aacute;c đẳng thức sau:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">a</mi><mo>)</mo><mo>&#160;</mo><mfenced><mrow><mfrac><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow><mrow><mn>1</mn><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow></mfrac><mo>+</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow></mfenced><msup><mfenced><mfrac><mrow><mn>1</mn><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi></mrow></mfrac></mfenced><mn>2</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mi>v</mi><mi>&#7899;</mi><mi>i</mi><mo mathvariant="italic">&#160;</mo><mi>a</mi><mo mathvariant="italic">&#160;</mo><mo mathvariant="italic">&#62;</mo><mo mathvariant="italic">&#160;</mo><mn mathvariant="italic">0</mn><mo mathvariant="italic">&#160;</mo><mi>v</mi><mi>&#224;</mi><mo mathvariant="italic">&#160;</mo><mi>a</mi><mo mathvariant="italic">&#160;</mo><mo mathvariant="italic">&#8800;</mo><mn mathvariant="italic">1</mn><mo mathvariant="italic">;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">b</mi><mo>)</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi></mrow><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mfrac><mo>.</mo><mo>&#160;</mo><msqrt><mfrac><mrow><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><msup><mi mathvariant="normal">b</mi><mn>4</mn></msup></mrow><mrow><msup><mi mathvariant="normal">a</mi><mrow><mn>2</mn><mo>&#160;</mo></mrow></msup><mo>+</mo><mo>&#160;</mo><mn>2</mn><mi>ab</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mrow></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mfenced open="|" close="|"><mi mathvariant="normal">a</mi></mfenced><mo>&#160;</mo><mi>v</mi><mi>&#7899;</mi><mi>i</mi><mo mathvariant="italic">&#160;</mo><mi>a</mi><mo mathvariant="italic">&#160;</mo><mo mathvariant="italic">+</mo><mo mathvariant="italic">&#160;</mo><mi>b</mi><mo mathvariant="italic">&#160;</mo><mo mathvariant="italic">&#62;</mo><mo mathvariant="italic">&#160;</mo><mn mathvariant="italic">0</mn><mo mathvariant="italic">&#160;</mo><mi>v</mi><mi>&#224;</mi><mo mathvariant="italic">&#160;</mo><mi>b</mi><mo mathvariant="italic">&#8800;</mo><mn mathvariant="italic">0</mn><mo mathvariant="italic">.</mo></math></p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p>a) Thực hiện vế tr&aacute;i:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>VT</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mfrac><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow><mrow><mn>1</mn><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow></mfrac><mo>&#160;</mo><mo>+</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow></mfenced><msup><mfenced><mfrac><mrow><mn>1</mn><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi></mrow></mfrac></mfenced><mn>2</mn></msup><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>+</mo><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>-</mo><mi mathvariant="normal">a</mi></mrow><mrow><mn>1</mn><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow></mfrac><mo>.</mo><mfrac><msup><mfenced><mrow><mn>1</mn><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow></mfenced><mn>2</mn></msup><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi></mrow></mfenced><mn>2</mn></msup></mfrac><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>+</mo><mo>&#160;</mo><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>-</mo><mi mathvariant="normal">a</mi></mrow></mfenced><mfrac><mrow><mn>1</mn><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi></mrow></mfenced><mn>2</mn></msup></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>+</mo><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>-</mo><mi mathvariant="normal">a</mi><mo>-</mo><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>+</mo><mi mathvariant="normal">a</mi><mo>.</mo><msqrt><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></msqrt><mo>-</mo><msup><mfenced><msqrt><mi mathvariant="normal">a</mi></msqrt></mfenced><mn>2</mn></msup><mo>+</mo><mi mathvariant="normal">a</mi><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi></mrow></mfenced><mn>2</mn></msup></mfrac><mspace linebreak="newline"/><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi mathvariant="normal">a</mi><mo>+</mo><mn>1</mn></mrow><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi></mrow></mfenced><mn>2</mn></msup></mfrac><mo>=</mo><mfrac><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi></mrow></mfenced><mn>2</mn></msup></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mfenced><mfrac><mrow><mi mathvariant="normal">a</mi><mo>-</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">a</mi></mrow></mfrac></mfenced><mn>2</mn></msup><mo>=</mo><mo>&#160;</mo><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mn>1</mn><mo>=</mo><mo>&#160;</mo><mi>VP</mi><mo>&#160;</mo><mo>(</mo><mi>&#273;</mi><mi>&#7859;</mi><mi>n</mi><mi>g</mi><mo>&#160;</mo><mi>t</mi><mi>h</mi><mi>&#7913;</mi><mi>c</mi><mo>&#160;</mo><mi>&#273;</mi><mi>&#432;</mi><mi>&#7907;</mi><mi>c</mi><mo>&#160;</mo><mi>c</mi><mi>h</mi><mi>&#7913;</mi><mi>n</mi><mi>g</mi><mo>&#160;</mo><mi>m</mi><mi>i</mi><mi>n</mi><mi>h</mi><mo>)</mo></math></p> <p>&nbsp;</p> <p>b) Thực hiện vế tr&aacute;i:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>VT</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi></mrow><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mfrac><mo>.</mo><mo>&#160;</mo><msqrt><mfrac><mrow><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><msup><mi mathvariant="normal">b</mi><mn>4</mn></msup></mrow><mrow><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mi>ab</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mrow></mfrac></msqrt><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi></mrow><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mfrac><mo>.</mo><msqrt><mfrac><msup><mfenced><msup><mi>ab</mi><mn>2</mn></msup></mfenced><mn>2</mn></msup><msup><mfenced><mrow><mi mathvariant="normal">a</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi></mrow></mfenced><mn>2</mn></msup></mfrac></msqrt><mspace linebreak="newline"/><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mrow><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mfrac><mo>.</mo><mfrac><mfenced open="|" close="|"><msup><mi>ab</mi><mn>2</mn></msup></mfenced><mfenced open="|" close="|"><mrow><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mrow></mfenced></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mrow><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mfrac><mo>.</mo><mfrac><mrow><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup><mfenced open="|" close="|"><mi mathvariant="normal">a</mi></mfenced></mrow><mrow><mi mathvariant="normal">a</mi><mo>+</mo><mi mathvariant="normal">b</mi></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mfenced open="|" close="|"><mi mathvariant="normal">a</mi></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>VP</mi><mo>&#160;</mo><mo mathvariant="italic">(</mo><mi>&#273;</mi><mi>&#7859;</mi><mi>n</mi><mi>g</mi><mo mathvariant="italic">&#160;</mo><mi>t</mi><mi>h</mi><mi>&#7913;</mi><mi>c</mi><mo mathvariant="italic">&#160;</mo><mi>&#273;</mi><mi>&#432;</mi><mi>&#7907;</mi><mi>c</mi><mo mathvariant="italic">&#160;</mo><mi>c</mi><mi>h</mi><mi>&#7913;</mi><mi>n</mi><mi>g</mi><mo mathvariant="italic">&#160;</mo><mi>m</mi><mi>i</mi><mi>n</mi><mi>h</mi><mo mathvariant="italic">)</mo></math></p>
Hướng dẫn Giải Bài 64 (trang 33, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 64 (trang 33, SGK Toán 9, Tập 1)
GV: GV colearn