Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Hướng dẫn giải Bài 49 (Trang 29 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 49 (Trang 29 SGK To&aacute;n 9, Tập 1):</strong></p> <p>Khử mẫu của biểu thức lấy căn:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>b</mi><msqrt><mfrac><mi>a</mi><mi>b</mi></mfrac></msqrt><mo>;</mo><mo>&#160;</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><msqrt><mfrac><mi>b</mi><mi>a</mi></mfrac></msqrt><mo>;</mo><mo>&#160;</mo><msqrt><mfrac><mn>1</mn><mi>b</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><msup><mi>b</mi><mn>2</mn></msup></mfrac></msqrt><mo>;</mo><mo>&#160;</mo><msqrt><mfrac><mrow><mn>9</mn><msup><mi>a</mi><mn>3</mn></msup></mrow><mrow><mn>36</mn><mi>b</mi></mrow></mfrac></msqrt><mo>;</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mi>y</mi><msqrt><mfrac><mn>2</mn><mrow><mi>x</mi><mi>y</mi></mrow></mfrac></msqrt><mo>.</mo></math></p> <p>(Giả thiết c&aacute;c biểu thức c&oacute; nghĩa).</p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ab</mi><msqrt><mfrac><mi mathvariant="normal">a</mi><mi mathvariant="normal">b</mi></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>ab</mi><msqrt><mfrac><mi>ab</mi><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi>ab</mi><mfenced open="|" close="|"><mi mathvariant="normal">b</mi></mfenced></mfrac><msqrt><mi>ab</mi></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi mathvariant="normal">a</mi><msqrt><mi>ab</mi></msqrt><mo>&#160;</mo><mi>n&#7871;u</mi><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi mathvariant="normal">a</mi><msqrt><mi>ab</mi></msqrt><mo>&#160;</mo><mi>n&#7871;u</mi><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">a</mi><mi mathvariant="normal">b</mi></mfrac><msqrt><mfrac><mi mathvariant="normal">b</mi><mi mathvariant="normal">a</mi></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">a</mi><mi mathvariant="normal">b</mi></mfrac><msqrt><mfrac><mi>ab</mi><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">a</mi><mrow><mi mathvariant="normal">b</mi><mfenced open="|" close="|"><mi mathvariant="normal">a</mi></mfenced></mrow></mfrac><msqrt><mi>ab</mi></msqrt><mo>=</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mfrac><mn>1</mn><mi mathvariant="normal">b</mi></mfrac><msqrt><mi>ab</mi><mo>&#160;</mo></msqrt><mi>n&#7871;u</mi><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mi mathvariant="normal">b</mi></mfrac><msqrt><mi>ab</mi><mo>&#160;</mo></msqrt><mi>n&#7871;u</mi><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mn>1</mn><mi mathvariant="normal">b</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mfrac><mrow><mi mathvariant="normal">b</mi><mo>+</mo><mn>1</mn></mrow><msup><mi mathvariant="normal">b</mi><mn>2</mn></msup></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mfenced open="|" close="|"><mi mathvariant="normal">b</mi></mfenced></mfrac><msqrt><mi mathvariant="normal">b</mi><mo>+</mo><mn>1</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mfrac><mn>1</mn><mi mathvariant="normal">b</mi></mfrac><msqrt><mi mathvariant="normal">b</mi><mo>+</mo><mn>1</mn><mo>&#160;</mo></msqrt><mi>n&#7871;u</mi><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>1</mn><mi mathvariant="normal">b</mi></mfrac><msqrt><mi mathvariant="normal">b</mi><mo>+</mo><mn>1</mn><mo>&#160;</mo></msqrt><mi>n&#7871;u</mi><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>9</mn><msup><mi mathvariant="normal">a</mi><mn>3</mn></msup></mrow><mrow><mn>36</mn><mi mathvariant="normal">b</mi></mrow></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mfrac><mrow><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><mo>.</mo><mi mathvariant="normal">a</mi><mo>.</mo><mi mathvariant="normal">b</mi></mrow><mrow><mi>ab</mi><mo>.</mo><mi mathvariant="normal">b</mi></mrow></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced open="|" close="|"><mfrac><mi mathvariant="normal">a</mi><mrow><mn>2</mn><mi mathvariant="normal">b</mi></mrow></mfrac></mfenced><msqrt><mi>ab</mi></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mfrac><mi mathvariant="normal">a</mi><mrow><mn>2</mn><mi mathvariant="normal">b</mi></mrow></mfrac><msqrt><mi>ab</mi><mo>&#160;</mo></msqrt><mi>n&#7871;u</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>.</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mi mathvariant="normal">a</mi><mrow><mn>2</mn><mi mathvariant="normal">b</mi></mrow></mfrac><msqrt><mi>ab</mi></msqrt><mo>&#160;</mo><mi>n&#7871;u</mi><mo>&#160;</mo><mi mathvariant="normal">a</mi><mo>.</mo><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>&#60;</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>xy</mi><msqrt><mfrac><mn>2</mn><mi>xy</mi></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>3</mn><msqrt><mfrac><mrow><mn>2</mn><msup><mrow><mo>(</mo><mi>xy</mi><mo>)</mo></mrow><mn>2</mn></msup></mrow><mi>xy</mi></mfrac></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>3</mn><msqrt><mn>2</mn><mi>xy</mi></msqrt><mo>&#160;</mo><mo mathvariant="italic">(</mo><mi>d</mi><mi>o</mi><mo mathvariant="italic">&#160;</mo><mi>x</mi><mi>y</mi><mo mathvariant="italic">&#160;</mo><mo mathvariant="italic">&#62;</mo><mo mathvariant="italic">&#160;</mo><mn mathvariant="italic">0</mn><mo mathvariant="italic">&#160;</mo><mi>n</mi><mi>&#234;</mi><mi>n</mi><mo mathvariant="italic">&#160;</mo><mi>d</mi><mi>&#432;</mi><mo mathvariant="italic">&#160;</mo><mi>t</mi><mi>h</mi><mi>&#7915;</mi><mi>a</mi><mo mathvariant="italic">&#160;</mo><mi>s</mi><mi>&#7889;</mi><mo mathvariant="italic">&#160;</mo><mi>x</mi><mi>y</mi><mo mathvariant="italic">&#160;</mo><mi>v</mi><mi>&#224;</mi><mi>o</mi><mo mathvariant="italic">&#160;</mo><mi>t</mi><mi>r</mi><mi>o</mi><mi>n</mi><mi>g</mi><mo mathvariant="italic">&#160;</mo><mi>d</mi><mi>&#7845;</mi><mi>u</mi><mo mathvariant="italic">&#160;</mo><mi>c</mi><mi>&#259;</mi><mi>n</mi><mo mathvariant="italic">)</mo></math></p>
Hướng dẫn Giải Bài 49 (trang 29, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 49 (trang 29, SGK Toán 9, Tập 1)
GV: GV colearn