Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Hướng dẫn giải Bài 55 (Trang 30 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 55 (Trang 30 SGK To&aacute;n 9, Tập 1):</strong></p> <p>Ph&acirc;n t&iacute;ch th&agrave;nh nh&acirc;n tử (với a, b, x, y l&agrave; c&aacute;c số kh&ocirc;ng &acirc;m).</p> <p>a)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ab</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>;</mo></math></p> <p>b)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi mathvariant="normal">x</mi><mn>3</mn></msup></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><msup><mi mathvariant="normal">y</mi><mn>3</mn></msup></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mi mathvariant="normal">y</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><msup><mi>xy</mi><mn>2</mn></msup></msqrt><mo>.</mo></math></p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p>a) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ab</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced open="[" close="]"><mrow><msup><mrow><mo>(</mo><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>)</mo></mrow><mn>2</mn></msup><mi mathvariant="normal">b</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><msqrt><mi mathvariant="normal">a</mi></msqrt></mrow></mfenced><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mo>(</mo><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>)</mo></math></p> <p>&nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>(</mo><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>)</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mo>(</mo><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>)</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>(</mo><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi mathvariant="normal">b</mi><msqrt><mi mathvariant="normal">a</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>)</mo><mo>;</mo></math></p> <p>b)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi mathvariant="normal">x</mi><mn>3</mn></msup></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><msup><mi mathvariant="normal">y</mi><mn>3</mn></msup></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mi mathvariant="normal">y</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><msup><mi>xy</mi><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mrow><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>)</mo></mrow><mn>3</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msup><mrow><mo>(</mo><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo></mrow><mn>3</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mi mathvariant="normal">y</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><msup><mi>xy</mi><mn>2</mn></msup></msqrt></math></p> <p>&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#160;</mo><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo><mo>(</mo><msqrt><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mi>xy</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup></msqrt><mo>)</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mi>xy</mi></msqrt><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo></math></p> <p>&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#160;</mo><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo><mo>(</mo><msqrt><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mo>&#160;</mo></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><msqrt><mi>xy</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><msup><mi mathvariant="normal">y</mi><mn>2</mn></msup></msqrt><mo>)</mo></math></p> <p>&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#160;</mo><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo><mfenced open="[" close="]"><mrow><msup><mrow><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>)</mo></mrow><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><msqrt><mi mathvariant="normal">x</mi></msqrt><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mrow><mo>(</mo><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo></mrow><mn>2</mn></msup></mrow></mfenced></math></p> <p>&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#160;</mo><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo><msup><mrow><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo></mrow><mn>2</mn></msup><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo><mo>.</mo><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo><mo>.</mo><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo></math></p> <p>&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>&#160;</mo><mo>(</mo><mi mathvariant="normal">x</mi><mo>-</mo><mi mathvariant="normal">y</mi><mo>)</mo><mo>(</mo><msqrt><mi mathvariant="normal">x</mi></msqrt><mo>+</mo><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo><mo>.</mo></math></p>
Hướng dẫn Giải Bài 55 (trang 30, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 55 (trang 30, SGK Toán 9, Tập 1)
GV: GV colearn