Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Hướng dẫn giải Bài 50 (Trang 30 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 50 (Trang 30 SGK To&aacute;n 9, Tập 1):</strong></p> <p>Trục căn thức ở mẫu với giả thiết c&aacute;c biểu thức chữ đều c&oacute; nghĩa.</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><msqrt><mn>10</mn></msqrt></mfrac><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mn>5</mn><mrow><mn>2</mn><msqrt><mn>5</mn></msqrt></mrow></mfrac><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mn>1</mn><mrow><mn>3</mn><msqrt><mn>20</mn></msqrt></mrow></mfrac><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mrow><mn>2</mn><msqrt><mn>2</mn></msqrt><mo>+</mo><mn>2</mn></mrow><mrow><mn>5</mn><msqrt><mn>2</mn></msqrt></mrow></mfrac><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><mo>.</mo><msqrt><mi mathvariant="normal">y</mi></msqrt></mrow><mrow><mi mathvariant="normal">b</mi><mo>.</mo><msqrt><mi mathvariant="normal">y</mi></msqrt></mrow></mfrac><mo>.</mo></math></p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><msqrt><mn>10</mn></msqrt></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>5</mn><msqrt><mn>10</mn></msqrt></mrow><mrow><msqrt><mn>10</mn></msqrt><mo>.</mo><msqrt><mn>10</mn></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>5</mn><msqrt><mn>10</mn></msqrt></mrow><mn>10</mn></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><msqrt><mn>10</mn></msqrt><mn>2</mn></mfrac><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mn>3</mn><msqrt><mn>20</mn></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mrow><mn>3</mn><msqrt><msup><mn>2</mn><mn>2</mn></msup><mo>.</mo><mn>5</mn></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mrow><mn>3</mn><mo>.</mo><mn>2</mn><msqrt><mn>5</mn></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>1</mn><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>6</mn><msqrt><mn>5</mn></msqrt><mo>.</mo><msqrt><mn>5</mn></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><msqrt><mn>5</mn></msqrt><mrow><mn>6</mn><mo>.</mo><mn>5</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><msqrt><mn>5</mn></msqrt><mn>30</mn></mfrac><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mrow><mn>2</mn><msqrt><mn>5</mn></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>5</mn><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>2</mn><msqrt><mn>5</mn></msqrt><mo>.</mo><msqrt><mn>5</mn></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>5</mn><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><msqrt><mn>5</mn></msqrt><mn>2</mn></mfrac><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><msqrt><mn>2</mn></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn></mrow><mrow><mn>5</mn><msqrt><mn>2</mn></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mo>(</mo><mn>2</mn><msqrt><mn>2</mn><mo>&#160;</mo></msqrt><mo>+</mo><mo>&#160;</mo><mn>2</mn><mo>)</mo><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>5</mn><msqrt><mn>2</mn></msqrt><mo>.</mo><msqrt><mn>2</mn></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>2</mn><msup><mrow><mo>(</mo><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>5</mn><mo>.</mo><mn>2</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>4</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></mrow><mn>10</mn></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>2</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>2</mn></msqrt></mrow><mn>5</mn></mfrac><mo>.</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><msqrt><mi mathvariant="normal">y</mi></msqrt></mrow><mrow><mi mathvariant="normal">b</mi><msqrt><mi mathvariant="normal">y</mi></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mo>(</mo><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>)</mo><msqrt><mi mathvariant="normal">y</mi></msqrt></mrow><mrow><mi mathvariant="normal">b</mi><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>.</mo><msqrt><mi mathvariant="normal">y</mi></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">y</mi><msqrt><mi mathvariant="normal">y</mi><mo>&#160;</mo></msqrt><mo>+</mo><mo>&#160;</mo><mi>by</mi></mrow><mi>by</mi></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><msqrt><mi mathvariant="normal">y</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">b</mi></mrow><mi mathvariant="normal">b</mi></mfrac><mo>.</mo></math></p> <p>Hoặc&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>y</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>b</mi><msqrt><mi>y</mi></msqrt></mrow><mrow><mi>b</mi><msqrt><mi>y</mi></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><msup><mrow><mo>(</mo><msqrt><mi>y</mi></msqrt><mo>)</mo></mrow><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>b</mi><msqrt><mi>y</mi></msqrt></mrow><mrow><mi>b</mi><msqrt><mi>y</mi></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><msqrt><mi>y</mi></msqrt><mo>(</mo><msqrt><mi>y</mi><mo>&#160;</mo></msqrt><mo>+</mo><mo>&#160;</mo><mi>b</mi><mo>)</mo></mrow><mrow><mi>b</mi><msqrt><mi>y</mi></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><msqrt><mi>y</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>b</mi></mrow><mi>b</mi></mfrac><mo>.</mo></math></p>
Hướng dẫn Giải Bài 50 (trang 30, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 50 (trang 30, SGK Toán 9, Tập 1)
GV: GV colearn