Bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Hướng dẫn giải Bài 51 (Trang 30 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 51 (Trang 30 SGK To&aacute;n 9, Tập 1):</strong></p> <p>Trục căn thức ở mẫu với giả thiết c&aacute;c biểu thức chữ đều c&oacute; nghĩa:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mrow><msqrt><mn>3</mn></msqrt><mo>+</mo><mn>1</mn></mrow></mfrac><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mn>2</mn><mrow><msqrt><mn>3</mn></msqrt><mo>-</mo><mn>1</mn></mrow></mfrac><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mrow><mn>2</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow></mfrac><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">b</mi><mrow><mn>3</mn><mo>+</mo><msqrt><mi mathvariant="normal">b</mi></msqrt></mrow></mfrac><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mi mathvariant="normal">p</mi><mrow><mn>2</mn><msqrt><mi mathvariant="normal">p</mi></msqrt><mo>-</mo><mn>1</mn></mrow></mfrac><mo>;</mo></math></p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mrow><msqrt><mn>3</mn></msqrt><mo>+</mo><mn>1</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>3</mn><mo>(</mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><msqrt><mn>3</mn></msqrt><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>3</mn><mo>(</mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>3</mn><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>3</mn><mo>(</mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></mfrac><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mrow><msqrt><mn>3</mn></msqrt><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>2</mn><mo>(</mo><msqrt><mn>3</mn></msqrt><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mn>1</mn><mo>)</mo><mo>(</mo><msqrt><mn>3</mn></msqrt><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>2</mn><mo>(</mo><msqrt><mn>3</mn></msqrt><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>3</mn><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>3</mn></msqrt><mo>+</mo><mn>1</mn><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mo>(</mo><mn>2</mn><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>)</mo><mo>(</mo><mn>2</mn><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo><mo>(</mo><mn>2</mn><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>4</mn><mo>+</mo><mn>4</mn><msqrt><mn>3</mn></msqrt><mo>+</mo><mn>3</mn></mrow><mrow><msup><mn>2</mn><mn>2</mn></msup><mo>-</mo><msup><mrow><mo>(</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow><mn>2</mn></msup></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>7</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>4</mn><msqrt><mn>3</mn></msqrt><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">b</mi><mrow><mn>3</mn><mo>+</mo><msqrt><mi mathvariant="normal">b</mi></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">b</mi><mo>(</mo><mn>3</mn><mo>-</mo><msqrt><mi mathvariant="normal">b</mi></msqrt><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>+</mo><msqrt><mi mathvariant="normal">b</mi></msqrt><mo>)</mo><mo>(</mo><mn>3</mn><mo>-</mo><msqrt><mi mathvariant="normal">b</mi></msqrt><mo>)</mo></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">b</mi><mo>(</mo><mn>3</mn><mo>-</mo><msqrt><mi mathvariant="normal">b</mi></msqrt><mo>)</mo></mrow><mrow><msup><mn>3</mn><mn>2</mn></msup><mo>-</mo><msup><mrow><mo>(</mo><msqrt><mi mathvariant="normal">b</mi></msqrt><mo>)</mo></mrow><mn>2</mn></msup></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">b</mi><mo>(</mo><mn>3</mn><mo>-</mo><msqrt><mi mathvariant="normal">b</mi></msqrt><mo>)</mo></mrow><mrow><mn>9</mn><mo>-</mo><mi mathvariant="normal">b</mi></mrow></mfrac><mo>.</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">p</mi><mrow><mn>2</mn><msqrt><mi mathvariant="normal">p</mi></msqrt><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">p</mi><mo>(</mo><mn>2</mn><msqrt><mi mathvariant="normal">p</mi></msqrt><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><msqrt><mi mathvariant="normal">p</mi></msqrt><mo>-</mo><mn>1</mn><mo>)</mo><mo>(</mo><mn>2</mn><msqrt><mi mathvariant="normal">p</mi></msqrt><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mi mathvariant="normal">p</mi><mo>(</mo><mn>2</mn><msqrt><mi mathvariant="normal">p</mi></msqrt><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><msup><mrow><mo>(</mo><mn>2</mn><msqrt><mi mathvariant="normal">p</mi></msqrt><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">p</mi><msqrt><mi mathvariant="normal">p</mi></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi mathvariant="normal">p</mi></mrow><mrow><mn>4</mn><mi mathvariant="normal">p</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn></mrow></mfrac><mo>.</mo></math></p>
Hướng dẫn Giải Bài 51 (trang 30, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 51 (trang 30, SGK Toán 9, Tập 1)
GV: GV colearn