Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 9 / Toán học /
Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số
Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số
Hướng dẫn giải Bài 23 (Trang 19 SGK Toán Đại số 9, Tập 2)
<p>Giải hệ phương trình sau:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>x</mi><mo>+</mo><mo>(</mo><mn>1</mn><mo>-</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>y</mi><mo>=</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>x</mi><mo>+</mo><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>y</mi><mo>=</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math></p> <p>Giải:</p> <p>Ta có: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>x</mi><mo>+</mo><mo>(</mo><mn>1</mn><mo>-</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>y</mi><mo>=</mo><mn>5</mn><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo>(</mo><mn>1</mn><mo>)</mo></mtd></mtr><mtr><mtd><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>x</mi><mo>+</mo><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>y</mi><mo>=</mo><mn>3</mn><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo>(</mo><mn>2</mn><mo>)</mo></mtd></mtr></mtable></mfenced></math></p> <p>Trừ từng vế hai phương trình (1) và (2) ta được:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>-</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>y</mi><mo>-</mo><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>y</mi><mo>=</mo><mn>2</mn><mspace linebreak="newline"/><mo>⇔</mo><mo>(</mo><mn>1</mn><mo>-</mo><msqrt><mn>2</mn></msqrt><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>y</mi><mo>=</mo><mn>2</mn><mo>⇔</mo><mo>-</mo><mn>2</mn><mi>y</mi><msqrt><mn>2</mn></msqrt><mo>=</mo><mn>2</mn><mspace linebreak="newline"/><mo>⇔</mo><mi>y</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn></mrow><mrow><mn>2</mn><msqrt><mn>2</mn></msqrt></mrow></mfrac><mo>⇔</mo><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mo>⇔</mo><mi>y</mi><mo>=</mo><mfrac><mrow><mo>-</mo><msqrt><mn>2</mn></msqrt></mrow><mn>2</mn></mfrac><mo> </mo><mo> </mo><mo> </mo><mo>(</mo><mn>3</mn><mo>)</mo></math></p> <p>Thay (3) vào (1) ta được:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇔</mo><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>x</mi><mo>+</mo><mo>(</mo><mn>1</mn><mo>-</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mo>(</mo><mfrac><mrow><mo>-</mo><msqrt><mn>2</mn></msqrt></mrow><mn>2</mn></mfrac><mo>)</mo><mo>=</mo><mn>5</mn><mspace linebreak="newline"/><mo>⇔</mo><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mi>x</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mo>+</mo><msqrt><mn>2</mn></msqrt></mrow><mn>2</mn></mfrac><mo>⇔</mo><mi>x</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mo>+</mo><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow></mfrac><mspace linebreak="newline"/><mo>⇔</mo><mi>x</mi><mo>=</mo><mfrac><mrow><mo>(</mo><mn>8</mn><mo>+</mo><msqrt><mn>2</mn></msqrt><mo>)</mo><mo>(</mo><mn>1</mn><mo>-</mo><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow><mrow><mn>2</mn><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>)</mo></mrow></mfrac><mo>⇔</mo><mfrac><mrow><mn>8</mn><mo>-</mo><mn>8</mn><msqrt><mn>2</mn></msqrt><mo>+</mo><msqrt><mn>2</mn></msqrt><mo>-</mo><mn>2</mn></mrow><mrow><mo>-</mo><mn>2</mn></mrow></mfrac><mspace linebreak="newline"/><mo>⇔</mo><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>6</mn><mo>-</mo><mn>7</mn><msqrt><mn>2</mn></msqrt></mrow><mn>2</mn></mfrac><mo>⇔</mo><mfrac><mrow><mo>-</mo><mn>6</mn><mo>+</mo><mn>7</mn><msqrt><mn>2</mn></msqrt></mrow><mn>2</mn></mfrac><mspace linebreak="newline"/><mi>H</mi><mi>ệ</mi><mo> </mo><mi>c</mi><mi>ó</mi><mo> </mo><mi>n</mi><mi>g</mi><mi>h</mi><mi>i</mi><mi>ệ</mi><mi>m</mi><mo> </mo><mi>l</mi><mi>à</mi><mo> </mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>6</mn><mo>+</mo><mn>7</mn><msqrt><mn>2</mn></msqrt></mrow><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><msqrt><mn>2</mn></msqrt></mrow><mn>2</mn></mfrac></mtd></mtr></mtable></mfenced><mo> </mo></math></p>
Xem lời giải bài tập khác cùng bài
Hướng dẫn giải Bài 20 (Trang 19 SGK Toán Đại số 9, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 21 (Trang 19 SGK Toán Đại số 9, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 22 (Trang 19 SGK Toán Đại số 9, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 24 (Trang 19 SGK Toán Đại số 9, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 25 (Trang 19 SGK Toán Đại số 9, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 26 (Trang 19 SGK Toán Đại số 9, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 27 (Trang 20 SGK Toán Đại số 9, Tập 2)
Xem lời giải