Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 9 / Toán học /
Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số
Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số
Hướng dẫn giải Bài 22 (Trang 19 SGK Toán Đại số 9, Tập 2)
<p>Giải các hệ phương trình sau bằng phương pháp cộng đại số:</p> <p>a, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mo>-</mo><mn>5</mn><mi>x</mi><mo>+</mo><mn>2</mn><mi>y</mi><mo>=</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>6</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mo>-</mo><mn>7</mn></mtd></mtr></mtable></mfenced><mo>;</mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>11</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>6</mn><mi>y</mi><mo>=</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>;</mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mi>c</mi><mo>,</mo><mo> </mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>3</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>=</mo><mn>10</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>y</mi><mo>=</mo><mn>3</mn><mfrac><mn>1</mn><mn>3</mn></mfrac></mtd></mtr></mtable></mfenced></math></p> <p>Giải:</p> <p>a, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mo>-</mo><mn>5</mn><mi>x</mi><mo>+</mo><mn>2</mn><mi>y</mi><mo>=</mo><mn>4</mn></mtd></mtr><mtr><mtd><mn>6</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mo>-</mo><mn>7</mn></mtd></mtr></mtable></mfenced><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mo>-</mo><mn>15</mn><mi>x</mi><mo>+</mo><mn>6</mn><mi>y</mi><mo>=</mo><mn>12</mn></mtd></mtr><mtr><mtd><mn>12</mn><mi>x</mi><mo>-</mo><mn>6</mn><mi>y</mi><mo>=</mo><mo>-</mo><mn>14</mn></mtd></mtr></mtable></mfenced><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mo>-</mo><mn>3</mn><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>15</mn><mi>x</mi><mo>+</mo><mn>6</mn><mi>y</mi><mo>=</mo><mn>12</mn></mtd></mtr></mtable></mfenced><mo>⇔</mo><mfenced open="{" close=""><mrow><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mn>6</mn><mi>y</mi><mo>=</mo><mn>12</mn><mo>+</mo><mn>15</mn><mo>.</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd></mtr></mtable><mo>⇔</mo><mfenced open="{" close=""><mrow><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mn>6</mn><mi>y</mi><mo>=</mo><mn>22</mn></mtd></mtr></mtable><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mi>y</mi><mo>=</mo><mfrac><mn>11</mn><mn>3</mn></mfrac></mtd></mtr></mtable></mfenced></mrow></mfenced></mrow></mfenced></math></p> <p>b, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>11</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>6</mn><mi>y</mi><mo>=</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>4</mn><mi>x</mi><mo>-</mo><mn>6</mn><mi>y</mi><mo>=</mo><mn>22</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>6</mn><mi>y</mi><mo>=</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>4</mn><mi>x</mi><mo>-</mo><mn>6</mn><mi>y</mi><mo>=</mo><mn>22</mn></mtd></mtr><mtr><mtd><mn>4</mn><mi>x</mi><mo>-</mo><mn>6</mn><mi>y</mi><mo>=</mo><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>4</mn><mi>x</mi><mo>-</mo><mn>6</mn><mi>y</mi><mo>=</mo><mn>22</mn></mtd></mtr><mtr><mtd><mn>0</mn><mi>x</mi><mo>-</mo><mn>0</mn><mi>y</mi><mo>=</mo><mn>27</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/></math></p> <p>Hệ phương trình vô nghiệm.</p> <p>c, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>3</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>=</mo><mn>10</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>y</mi><mo>=</mo><mn>3</mn><mfrac><mn>1</mn><mn>3</mn></mfrac></mtd></mtr></mtable></mfenced><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>3</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>=</mo><mn>10</mn></mtd></mtr><mtr><mtd><mn>3</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>=</mo><mn>3</mn><mo>.</mo><mfrac><mn>10</mn><mn>3</mn></mfrac></mtd></mtr></mtable></mfenced><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>3</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>=</mo><mn>10</mn></mtd></mtr><mtr><mtd><mn>3</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>=</mo><mn>10</mn></mtd></mtr></mtable></mfenced><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>∈</mo><mi>R</mi></mtd></mtr><mtr><mtd><mn>2</mn><mi>y</mi><mo>=</mo><mn>3</mn><mi>x</mi><mo>-</mo><mn>10</mn></mtd></mtr></mtable></mfenced><mo>⇔</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>∈</mo><mi>R</mi></mtd></mtr><mtr><mtd><mi>y</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mi>x</mi><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math></p> <p>Hệ phương trình có vô số nghiệm.</p>
Xem lời giải bài tập khác cùng bài
Hướng dẫn giải Bài 20 (Trang 19 SGK Toán Đại số 9, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 21 (Trang 19 SGK Toán Đại số 9, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 23 (Trang 19 SGK Toán Đại số 9, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 24 (Trang 19 SGK Toán Đại số 9, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 25 (Trang 19 SGK Toán Đại số 9, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 26 (Trang 19 SGK Toán Đại số 9, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 27 (Trang 20 SGK Toán Đại số 9, Tập 2)
Xem lời giải