Ôn Tập Chương 2
Hướng dẫn Giải Bài 57 (Trang 61, SGK Toán 8, Tập 1)
<p>Chứng tỏ mỗi cặp ph&acirc;n thức sau bằng nhau:</p> <p>a)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math> v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>6</mn></mrow><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>-</mo><mn>6</mn></mrow></mfrac></math>;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; b)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfrac><mo>;</mo><mfrac><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>6</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>12</mn><mi>x</mi></mrow></mfrac></math>.</p> <p><strong>Giải</strong></p> <p>a) D&ugrave;ng định nghĩa hai ph&acirc;n thức bằng nhau:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>6</mn></mrow><mrow><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi><mo>-</mo><mn>6</mn></mrow></mfrac></math></p> <p>v&igrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>(</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>-</mo><mn>6</mn><mo>)</mo></math> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>x</mi><mo>-</mo><mn>18</mn></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>x</mi><mo>-</mo><mn>18</mn><mspace linebreak="newline"/><mo>=</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>12</mn><mi>x</mi><mo>-</mo><mn>9</mn><mi>x</mi><mo>-</mo><mn>18</mn><mspace linebreak="newline"/><mo>=</mo><mn>2</mn><mi>x</mi><mo>(</mo><mn>3</mn><mi>x</mi><mo>+</mo><mn>6</mn><mo>)</mo><mo>-</mo><mn>3</mn><mo>(</mo><mn>3</mn><mi>x</mi><mo>+</mo><mn>6</mn><mo>)</mo><mspace linebreak="newline"/><mo>=</mo><mo>(</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>)</mo><mo>(</mo><mn>3</mn><mi>x</mi><mo>+</mo><mn>6</mn><mo>)</mo></math></p> <p>b)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfrac><mo>;</mo><mfrac><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>6</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>12</mn><mi>x</mi></mrow></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>6</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>12</mn></mrow></mfrac></math></p> <p>V&igrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>12</mn><mi>x</mi></mrow></mfenced><mo>=</mo><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>14</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>24</mn><mi>x</mi></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>x</mi><mo>+</mo><mn>4</mn><mo>)</mo><mo>(</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>6</mn><mi>x</mi><mo>)</mo><mo>=</mo><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>8</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>24</mn><mi>x</mi></math></p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>14</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>24</mn><mi>x</mi></math></p> <p>nghĩa l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>(</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>12</mn><mi>x</mi><mo>)</mo><mo>=</mo><mfenced><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>6</mn><mi>x</mi></mrow></mfenced></math></p> <p>&nbsp;</p> <p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;</p>
Hướng dẫn Giải Bài 57 (Trang 61, SGK Toán 8, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 57 (Trang 61, SGK Toán 8, Tập 1)
GV: GV colearn