Ôn tập chương IV
Hướng dẫn giải Bài 57 (Trang 129 SGK Toán Hình học 8, Tập 2)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>T&iacute;nh thể t&iacute;ch của h&igrave;nh ch&oacute;p đều, h&igrave;nh ch&oacute;p cụt đều sau đ&acirc;y (h.147 v&agrave; h.148)</p> <p><em>Hướng dẫn:</em>&nbsp;H&igrave;nh ch&oacute;p&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">L</span></span><span id="MJXc-Node-4" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span><span id="MJXc-Node-5" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-6" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-7" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">G</span></span><span id="MJXc-Node-8" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span>&nbsp;cũng l&agrave; h&igrave;nh ch&oacute;p đều</p> <p><img src="https://img.loigiaihay.com/picture/2018/0719/b57-trang-129-sgk-toan-8-t2-c2.jpg" /></p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><span class="content_detail">a) H&igrave;nh 147<br />Chiều cao của tam gi&aacute;c đều BCD cạnh 10cm l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>H</mi><mo>=</mo><msqrt><mi>A</mi><mo>&#8290;</mo><msup><mi>C</mi><mn>2</mn></msup><mo>-</mo><msup><mrow><mo>(</mo><mfrac><mrow><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mrow><mn>2</mn></mfrac><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mo>=</mo><msqrt><msup><mn>10</mn><mn>2</mn></msup><mo>-</mo><msup><mn>5</mn><mn>2</mn></msup></msqrt><mo>=</mo><mn>5</mn><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt><mo>&#8776;</mo><mn>8</mn><mo>,</mo><mpadded><mn>65</mn></mpadded><mo>&#8290;</mo><mo>&#8290;</mo><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow><mo>&#8290;</mo></math><br />Diện t&iacute;ch đ&aacute;y của h&igrave;nh ch&oacute;p l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8901;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>.</mo><mi>D</mi><mo>&#8290;</mo><mi>H</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8901;</mo><mn>10</mn><mo>&#8901;</mo><mn>8</mn><mo>,</mo><mn>65</mn><mo>=</mo><mn>43</mn><mo>,</mo><mn>25</mn><mo>&#8290;</mo><mrow><mo>(</mo><msup><mi>cm</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>&#8290;</mo></math><br />Thể t&iacute;ch h&igrave;nh ch&oacute;p đều:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>.</mo><mi>S</mi><mo>.</mo><mi>h</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>&#8290;</mo><mn>.43</mn><mo>,</mo><mn>25.20</mn><mo>=</mo><mn>288</mn><mo>,</mo><mn>33</mn><mo>&#8290;</mo><mrow><mo>(</mo><msup><mi>cm</mi><mn>3</mn></msup><mo>)</mo></mrow></math><br />b) H&igrave;nh 148<br />Thể t&iacute;ch của h&igrave;nh ch&oacute;p cụt đều ch&iacute;nh l&agrave; hiệu của thể t&iacute;ch h&igrave;nh ch&oacute;p đều L.ABCD với thể t&iacute;ch của h&igrave;nh ch&oacute;p đều L.EFGH. Do c&oacute;: LO=LM+MO=15+15=30cm<br />+ T&iacute;nh thể t&iacute;ch h&igrave;nh ch&oacute;p đều L.ABCD:<br />- Diện t&iacute;ch đ&aacute;y: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mn>1</mn></msub><mo>=</mo><mi>A</mi><mo>&#8290;</mo><msup><mi>B</mi><mn>2</mn></msup><mo>=</mo><msup><mn>20</mn><mn>2</mn></msup><mo>=</mo><mn>400</mn><mo>&#8290;</mo><mrow><mo>(</mo><msup><mi>cm</mi><mn>2</mn></msup><mo>)</mo></mrow></mstyle></math><br />- Thể t&iacute;ch h&igrave;nh ch&oacute;p đều L.ABCD l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>V</mi><mn>1</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>&#8290;</mo><msub><mi>S</mi><mn>1</mn></msub><mo>&#8290;</mo><msub><mi>h</mi><mn>1</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>&#8901;</mo><mn>400</mn><mo>&#8901;</mo><mn>30</mn><mo>=</mo><mn>4000</mn><mo>&#8290;</mo><mrow><mo>(</mo><msup><mi>cm</mi><mn>3</mn></msup><mo>)</mo></mrow></math><br /></span><span class="content_detail">+Thể t&iacute;ch h&igrave;nh ch&oacute;p đều L.EFGH:</span><strong class="content_detail"><br /></strong></p> <p><span class="content_detail">-Diện t&iacute;ch đ&aacute;y: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mn>2</mn></msub><mo>=</mo><mi>E</mi><mo>&#8290;</mo><msup><mi>F</mi><mn>2</mn></msup><mo>=</mo><msup><mn>10</mn><mn>2</mn></msup><mo>=</mo><mn>100</mn><mo>&#8290;</mo><mrow><mo>(</mo><msup><mi>cm</mi><mn>2</mn></msup><mo>)</mo></mrow></mstyle></math><br />-Thể t&iacute;ch h&igrave;nh ch&oacute;p đều L.EFGH l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>V</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>&#8290;</mo><msub><mi>S</mi><mn>2</mn></msub><mo>&#8290;</mo><msub><mi>h</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>&#8901;</mo><mn>100.15</mn><mo>=</mo><mn>500</mn><mo>&#8290;</mo><mrow><mo>(</mo><msup><mi>cm</mi><mn>3</mn></msup><mo>)</mo></mrow></math><br />Vậy thể t&iacute;ch h&igrave;nh ch&oacute;p cụt đều l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><msub><mi>V</mi><mn>1</mn></msub><mo>-</mo><msub><mi>V</mi><mn>2</mn></msub><mo>=</mo><mn>4000</mn><mo>-</mo><mn>500</mn><mo>=</mo><mn>3500</mn><mo>&#8290;</mo><mrow><mo>(</mo><msup><mi>cm</mi><mn>3</mn></msup><mo>)</mo></mrow></math><br /></span></p>
Xem lời giải bài tập khác cùng bài