Ôn tập chương IV
Hướng dẫn giải Bài 51 (Trang 127 SGK Toán Hình học 8, Tập 2)
<div> <p>T&iacute;nh diện t&iacute;ch xung quanh, diện t&iacute;ch to&agrave;n phần v&agrave; thể t&iacute;ch của lăng trụ đứng c&oacute; chiều cao&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">h</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math></span></span>&nbsp;v&agrave; đ&aacute;y lần lượt l&agrave;:</p> </div> <div id="sub-question-1" class="box-question top20"> <p><strong>LG a.</strong></p> <p>H&igrave;nh vu&ocirc;ng cạnh&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-4" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-5" class="mjx-mrow"><span id="MJXc-Node-6" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">a</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span>;</p> <p><strong>Phương ph&aacute;p giải:</strong></p> <p>&Aacute;p dụng c&ocirc;ng thức t&iacute;nh diện t&iacute;ch xung quanh, diện t&iacute;ch to&agrave;n phần v&agrave; thể t&iacute;ch của lăng trụ đứng.&nbsp;</p> <p>+ Diện t&iacute;ch xung quanh h&igrave;nh lăng trụ bằng t&iacute;ch của chu vi đ&aacute;y v&agrave; chiều cao.&nbsp;</p> <p>+ Diện t&iacute;ch to&agrave;n phần h&igrave;nh lăng trụ bằng tổng của diện t&iacute;ch xung quanh v&agrave; diện t&iacute;ch hai đ&aacute;y.</p> <p>+ Thể t&iacute;ch h&igrave;nh lăng trụ đứng bằng t&iacute;ch của diện t&iacute;ch đ&aacute;y v&agrave; chiều cao.&nbsp;</p> <p><strong>Lời giải chi tiết:</strong></p> <p><strong><img src="https://img.loigiaihay.com/picture/2018/0719/b51a-trang-127-sgk-toan-8-t2-c2.jpg" /></strong></p> <p>K&iacute; hiệu lăng trụ đứng đ&atilde; cho như' h&igrave;nh b&ecirc;n.<br />p l&agrave; nửa chu vi đ&aacute;y v&agrave; h l&agrave; chiều cao lăng trụ.<br />Diện t&iacute;ch xung quanh l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mrow><mi>x</mi><mo>&#8290;</mo><mi>q</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>&#8290;</mo><mi>p</mi><mo>.</mo><mi>h</mi><mo>=</mo><mn>4</mn><mo>.</mo><mi>a</mi><mo>.</mo><mi>h</mi></math><br />Diện t&iacute;ch một đ&aacute;y l&agrave; :<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi mathvariant="normal">d</mi></msub><mo>=</mo><msup><mi>a</mi><mn>2</mn></msup></math><br />Diện t&iacute;ch to&agrave;n phần của lăng trụ đứng l&agrave; :<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><msub><mi>S</mi><mrow><mi>t</mi><mo>&#8290;</mo><mi>p</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>x</mi><mo>&#8290;</mo><mi>q</mi></mrow></msub><mo>+</mo><mn>2</mn><mo>&#8290;</mo><msub><mi>S</mi><mi>&#273;</mi></msub><mo>=</mo><mn>4</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi><mo>+</mo><mn>2</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo></math><br />Thể t&iacute;ch lăng trụ :<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><mi>V</mi><mo>=</mo><msub><mi>S</mi><mrow><mi mathvariant="normal">&#196;</mi><mo>&#8290;</mo><mi mathvariant="normal">&#8216;</mi></mrow></msub><mo>&#8290;</mo><mi>h</mi><mo>=</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8901;</mo><mi>h</mi><mo>&#8290;</mo></math><strong><br /></strong></p> </div> <p><strong>LG b.</strong></p> <p>Tam gi&aacute;c đều cạnh&nbsp;<span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-104" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-105" class="mjx-mrow"><span id="MJXc-Node-106" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">a</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span>;</p> <p><strong>Phương ph&aacute;p giải:</strong></p> <p>&Aacute;p dụng c&ocirc;ng thức t&iacute;nh diện t&iacute;ch xung quanh, diện t&iacute;ch to&agrave;n phần v&agrave; thể t&iacute;ch của lăng trụ đứng.&nbsp;</p> <p>+ Diện t&iacute;ch xung quanh h&igrave;nh lăng trụ bằng t&iacute;ch của chu vi đ&aacute;y v&agrave; chiều cao.</p> <p>+ Diện t&iacute;ch to&agrave;n phần h&igrave;nh lăng trụ bằng tổng của diện t&iacute;ch xung quanh v&agrave; diện t&iacute;ch hai đ&aacute;y.</p> <p>+ Thể t&iacute;ch h&igrave;nh lăng trụ đứng bằng t&iacute;ch của diện t&iacute;ch đ&aacute;y v&agrave; chiều cao.</p> <p><strong>Lời giải chi tiết:</strong></p> <p><img src="https://img.loigiaihay.com/picture/2018/0719/b51b-trang-127-sgk-toan-8-t2-c2.jpg" /></p> <p>Chiều cao của tam gi&aacute;c đều ABC l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>&#8290;</mo><mi>H</mi><mo>=</mo><msqrt><mi>A</mi><mo>&#8290;</mo><msup><mi>B</mi><mn>2</mn></msup><mo>-</mo><mi>B</mi><mo>&#8290;</mo><msup><mi>H</mi><mn>2</mn></msup></msqrt><mo>=</mo><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><msup><mrow><mo>(</mo><mfrac><mi>a</mi><mn>2</mn></mfrac><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mo>=</mo><msqrt><mfrac><mrow><mn>3</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mn>4</mn></mfrac></msqrt><mo>=</mo><mfrac><mrow><mi>a</mi><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>&#8290;</mo></math><br />Diện t&iacute;ch xung quanh l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><msub><mi>S</mi><mrow><mi>x</mi><mo>&#8290;</mo><mi>q</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>&#8290;</mo><mi>p</mi><mo>.</mo><mi>h</mi><mo>=</mo><mn>3</mn><mo>&#8290;</mo><mi>a</mi><mo>.</mo><mi>h</mi><mo>&#8290;</mo></math><br />Diện t&iacute;ch một đ&aacute;y l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>&#273;</mi></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>a</mi><mo>&#8901;</mo><mfrac><mrow><mi>a</mi><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac><mo>&#8290;</mo></math><br />Diện t&iacute;ch to&agrave;n phần l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mrow><mi>t</mi><mo>&#8290;</mo><mi>p</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>x</mi><mo>&#8290;</mo><mi>q</mi></mrow></msub><mo>+</mo><mn>2</mn><mo>&#8290;</mo><msub><mi>S</mi><mi mathvariant="normal">d</mi></msub><mo>=</mo><mn>3</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi><mo>+</mo><mn>2</mn><mo>&#8901;</mo><mfrac><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac><mo>=</mo><mn>3</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi><mo>+</mo><mfrac><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>&#8290;</mo></math><br />Thể t&iacute;ch: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>V</mi><mo>=</mo><msub><mi>S</mi><mi mathvariant="normal">&#273;</mi></msub><mo>&#8901;</mo><mi>h</mi><mo>=</mo><mfrac><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac><mo>&#8901;</mo><mi>h</mi><mo>=</mo><mfrac><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><mi>h</mi><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac></mstyle></math></p> <p>Diện t&iacute;ch to&agrave;n phần l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><msub><mi>S</mi><mrow><mi>t</mi><mo>&#8290;</mo><mi>p</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>x</mi><mo>&#8290;</mo><mi>q</mi></mrow></msub><mo>+</mo><mn>2</mn><mo>&#8290;</mo><msub><mi>S</mi><mi mathvariant="normal">&#273;</mi></msub><mo>=</mo><mn>3</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi><mo>+</mo><mn>2</mn><mo>&#8901;</mo><mfrac><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac><mo>=</mo><mn>3</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi><mo>+</mo><mfrac><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>&#8290;</mo></math><br />Thể t&iacute;ch: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>V</mi><mo>=</mo><msub><mi>S</mi><mrow><mi mathvariant="normal">&#196;</mi><mo>&#8290;</mo><mi mathvariant="normal">&#8216;</mi></mrow></msub><mo>&#8901;</mo><mi>h</mi><mo>=</mo><mfrac><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac><mo>&#8901;</mo><mi>h</mi><mo>=</mo><mfrac><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><mi>h</mi><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac></mstyle></math></p> <p><strong>LG c.</strong></p> <p>Lục gi&aacute;c đều cạnh&nbsp;<span id="MathJax-Element-15-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-358" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-359" class="mjx-mrow"><span id="MJXc-Node-360" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">a</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span>;</p> <p><strong>Phương ph&aacute;p giải:</strong></p> <p>&Aacute;p dụng c&ocirc;ng thức t&iacute;nh diện t&iacute;ch xung quanh, diện t&iacute;ch to&agrave;n phần v&agrave; thể t&iacute;ch của lăng trụ đứng.&nbsp;</p> <p>+ Diện t&iacute;ch xung quanh h&igrave;nh lăng trụ bằng t&iacute;ch của chu vi đ&aacute;y v&agrave; chiều cao.</p> <p>+ Diện t&iacute;ch to&agrave;n phần h&igrave;nh lăng trụ bằng tổng của diện t&iacute;ch xung quanh v&agrave; diện t&iacute;ch hai đ&aacute;y.</p> <p>+ Thể t&iacute;ch h&igrave;nh lăng trụ đứng bằng t&iacute;ch của diện t&iacute;ch đ&aacute;y v&agrave; chiều cao.</p> <p><strong>Lời giải chi tiết:</strong></p> <p><img src="https://img.loigiaihay.com/picture/2018/0719/b51c-trang-127-sgk-toan-8-t2-c2.jpg" /></p> <p>Diện t&iacute;ch xung quanh l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><msub><mi>S</mi><mrow><mi>x</mi><mo>&#8290;</mo><mi>q</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>&#8290;</mo><mi>p</mi><mo>.</mo><mi>h</mi><mo>=</mo><mn>6</mn><mo>&#8290;</mo><mi>a</mi><mo>.</mo><mi>h</mi><mo>&#8290;</mo></math><br />Diện t&iacute;ch tam gi&aacute;c đều cạnh a (theo c&acirc;u b) l&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac></mstyle></math>.<br />Do đ&oacute; diện t&iacute;ch một đ&aacute;y của lăng trụ l&agrave; :<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><msub><mi>S</mi><mi>&#273;</mi></msub><mo>=</mo><mn>6</mn><mo>&#8901;</mo><mfrac><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>&#8290;</mo></math><br />Diện t&iacute;ch to&agrave;n phần l&agrave;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mrow><mi>t</mi><mo>&#8290;</mo><mi>p</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>x</mi><mo>&#8290;</mo><mi>q</mi></mrow></msub><mo>+</mo><mn>2</mn><mo>&#8290;</mo><msub><mi>S</mi><mi>&#273;</mi></msub></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><msub><mi>S</mi><mrow><mi>t</mi><mo>&#8290;</mo><mi>p</mi></mrow></msub><mo>=</mo><mn>6</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi><mo>+</mo><mn>2</mn><mo>&#8901;</mo><mfrac><mrow><mn>3</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>=</mo><mn>6</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi><mo>+</mo><mn>3</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt><mo>=</mo><mn>3</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mrow><mo>(</mo><mn>2</mn><mo>&#8290;</mo><mi>h</mi><mo>+</mo><mi>a</mi><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow><mo>&#8290;</mo></math><br />Thể t&iacute;ch t&iacute;ch lăng trụ :<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><msub><mi>S</mi><mi>&#273;</mi></msub><mo>&#8901;</mo><mi>h</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>&#8901;</mo><mi>h</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><mi>h</mi><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>&#8290;</mo></math></p> <p><strong>LG d.</strong></p> <p>H&igrave;nh thang c&acirc;n, đ&aacute;y lớn l&agrave;&nbsp;<span id="MathJax-Element-23-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-577" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-578" class="mjx-mrow"><span id="MJXc-Node-579" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">2</span></span><span id="MJXc-Node-580" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">a</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>a</mi></math></span></span>, c&aacute;c cạnh c&ograve;n lại bằng&nbsp;<span id="MathJax-Element-24-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-581" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-582" class="mjx-mrow"><span id="MJXc-Node-583" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">a</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span>;</p> <p><strong>Phương ph&aacute;p giải:</strong></p> <p>&Aacute;p dụng c&ocirc;ng thức t&iacute;nh diện t&iacute;ch xung quanh, diện t&iacute;ch to&agrave;n phần v&agrave; thể t&iacute;ch của lăng trụ đứng.&nbsp;</p> <p>+ Diện t&iacute;ch xung quanh h&igrave;nh lăng trụ bằng t&iacute;ch của chu vi đ&aacute;y v&agrave; chiều cao.</p> <p>+ Diện t&iacute;ch to&agrave;n phần h&igrave;nh lăng trụ bằng tổng của diện t&iacute;ch xung quanh v&agrave; diện t&iacute;ch hai đ&aacute;y.</p> <p>+ Thể t&iacute;ch h&igrave;nh lăng trụ đứng bằng t&iacute;ch của diện t&iacute;ch đ&aacute;y v&agrave; chiều cao.</p> <p><strong>Lời giải chi tiết:</strong></p> <p><img src="https://img.loigiaihay.com/picture/2018/0719/b51d-trang-127-sgk-toan-8-t2-c2.jpg" /></p> <p>Diện t&iacute;ch xung quanh :<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><msub><mi>S</mi><mrow><mi>x</mi><mo>&#8290;</mo><mi>q</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>&#8290;</mo><mi>p</mi><mo>&#8290;</mo><mi>h</mi><mo>=</mo><mrow><mo>(</mo><mn>2</mn><mo>&#8290;</mo><mi>a</mi><mo>+</mo><mi>a</mi><mo>+</mo><mi>a</mi><mo>+</mo><mi>a</mi><mo>)</mo></mrow><mo>.</mo><mi>h</mi><mo>=</mo><mn>5</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi><mo>&#8290;</mo><mo>.</mo></math><br />Chiều cao h&igrave;nh thang cũng ch&iacute;nh l&agrave; chiều cao tam gi&aacute;c đều cạnh a.<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>&#8290;</mo><mi>H</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>&#8290;</mo></math>(theo c&acirc;u b)<br />Diện t&iacute;ch một đ&aacute;y h&igrave;nh lăng trụ l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><msub><mi>S</mi><mi>&#273;</mi></msub><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><mn>2</mn><mo>&#8290;</mo><mi>a</mi><mo>+</mo><mi>a</mi><mo>)</mo></mrow><mo>&#8901;</mo><mi>A</mi><mo>&#8290;</mo><mi>H</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><mo>&#8290;</mo><mi>a</mi></mrow><mn>2</mn></mfrac><mo>&#8901;</mo><mfrac><mrow><mi>a</mi><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac><mo>&#8290;</mo></math><br />Diện t&iacute;ch to&agrave;n phần l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mrow><mi>t</mi><mo>&#8290;</mo><mi>p</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>x</mi><mo>&#8290;</mo><mi>q</mi></mrow></msub><mo>+</mo><mn>2</mn><mo>&#8290;</mo><msub><mi>S</mi><mi>&#273;</mi></msub><mo>=</mo><mn>5</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi><mo>+</mo><mn>2</mn><mo>&#8901;</mo><mfrac><mrow><mn>3</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac><mo>=</mo><mn>5</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi><mo>+</mo><mfrac><mrow><mn>3</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>&#8290;</mo></math></p> <p>Thể t&iacute;ch h&igrave;nh lăng trụ:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi>S</mi><mo>.</mo><mi>h</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac><mo>.</mo><mi>h</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo><mi>h</mi><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>4</mn></mfrac><mo>&#8290;</mo></math></p> <p><strong>LG e.</strong></p> <p>H&igrave;nh thoi c&oacute; hai đường ch&eacute;o l&agrave;&nbsp;<span id="MathJax-Element-34-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-817" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-818" class="mjx-mrow"><span id="MJXc-Node-819" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">6</span></span><span id="MJXc-Node-820" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">a</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi>a</mi></math></span></span>&nbsp;v&agrave;&nbsp;<span id="MathJax-Element-35-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-821" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-822" class="mjx-mrow"><span id="MJXc-Node-823" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">8</span></span><span id="MJXc-Node-824" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">a</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mi>a</mi></math></span></span>.</p> <p><strong>Phương ph&aacute;p giải:</strong></p> <p>&Aacute;p dụng c&ocirc;ng thức t&iacute;nh diện t&iacute;ch xung quanh, diện t&iacute;ch to&agrave;n phần v&agrave; thể t&iacute;ch của lăng trụ đứng.</p> <p>+ Diện t&iacute;ch xung quanh h&igrave;nh lăng trụ bằng t&iacute;ch của chu vi đ&aacute;y v&agrave; chiều cao.&nbsp;</p> <p>+ Diện t&iacute;ch to&agrave;n phần h&igrave;nh lăng trụ bằng tổng của diện t&iacute;ch xung quanh v&agrave; diện t&iacute;ch hai đ&aacute;y.</p> <p>+ Thể t&iacute;ch h&igrave;nh lăng trụ đứng bằng t&iacute;ch của diện t&iacute;ch đ&aacute;y v&agrave; chiều cao.</p> <p><strong>Lời giải chi tiết:</strong></p> <p><img src="https://img.loigiaihay.com/picture/2020/0212/he-bai-51-trang-127-sgk-toan-8-tap-2.PNG" /></p> <p>V&igrave; hai đường ch&eacute;o BD=6a, AC=8a n&ecirc;n OB=3a, OC=4a.<br />Cạnh của h&igrave;nh thoi:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>=</mo><msqrt><mi>O</mi><mo>&#8290;</mo><msup><mi>B</mi><mn>2</mn></msup><mo>+</mo><mi>O</mi><mo>&#8290;</mo><msup><mi>C</mi><mn>2</mn></msup></msqrt><mo>=</mo><msqrt><msup><mrow><mo>(</mo><mn>3</mn><mo>&#8290;</mo><mi>a</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><mn>4</mn><mo>&#8290;</mo><mi>a</mi><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mo>=</mo><msqrt><mn>25</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup></msqrt><mo>=</mo><mn>5</mn><mo>&#8290;</mo><mi>a</mi></mstyle></math><br />Diện t&iacute;ch xung quanh lăng trụ:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mrow><mi>x</mi><mo>&#8290;</mo><mi>q</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>&#8290;</mo><mi>p</mi><mo>&#8290;</mo><mi>h</mi><mo>=</mo><mn>4.5</mn><mo>&#8290;</mo><mi>a</mi><mo>.</mo><mi>h</mi><mo>=</mo><mn>20</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi></mstyle></math><br />Diện t&iacute;ch một đ&aacute;y của lăng trụ:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>&#273;</mi></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8901;</mo><mn>6</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8901;</mo><mn>8</mn><mo>&#8290;</mo><mi>a</mi><mo>=</mo><mn>24</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo></math><br />Diện t&iacute;ch to&agrave;n phần:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><msub><mi>S</mi><mrow><mi>t</mi><mo>&#8290;</mo><mi>p</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>x</mi><mo>&#8290;</mo><mi>q</mi></mrow></msub><mo>+</mo><mn>2</mn><mo>&#8290;</mo><msub><mi>S</mi><mi mathvariant="normal">d</mi></msub><mo>=</mo><mn>20</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi><mo>+</mo><mn>2.24</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mn>20</mn><mo>&#8290;</mo><mi>a</mi><mo>&#8290;</mo><mi>h</mi><mo>+</mo><mn>48</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>&#8290;</mo></math><br />Thể t&iacute;ch lăng trụ:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><mi>V</mi><mo>=</mo><mi>S</mi><mo>&#8290;</mo><mi>h</mi><mo>=</mo><mn>24</mn><mo>&#8290;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>.</mo><mi>h</mi><mo>&#8290;</mo></math></p>
Xem lời giải bài tập khác cùng bài