Bài 7: Hình Bình Hành
Hướng dẫn giải Bài 44 (Trang 92 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho h&igrave;nh b&igrave;nh h&agrave;nh&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">CD</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>.</mi></math></span></span>&nbsp;Gọi &nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-7" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-8" class="mjx-mrow"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span></span></span></span> l&agrave; trung điểm của <span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D,</mi></math></span></span>&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-14" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-15" class="mjx-mrow"><span id="MJXc-Node-16" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span></span></span></span>&nbsp;l&agrave; trung điểm của&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>C</mi></math></span></span>. Chứng minh rằng&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-21" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-22" class="mjx-mrow"><span id="MJXc-Node-23" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-24" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-25" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-26" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-27" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span></span></span></span>.</p> <p><strong>Lời giải chi tiết&nbsp;</strong></p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/03072022/51a552be-e672-41b2-8487-3b05a9c1540b.PNG" /></p> <p>ABCD h&igrave;nh b&igrave;nh h&agrave;nh n&ecirc;n DE//BF v&agrave; AD=BC<br />E l&agrave; trung điểm của AD (giả thiết) n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>E</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi></math> (t&iacute;nh chất trung điểm)<br />F l&agrave; trung điểm của BC (giả thiết) n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>F</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></math> (t&iacute;nh chất trung điểm)<br />M&agrave; AD=BC (chứng minh tr&ecirc;n) n&ecirc;n DE=BF<br />Tứ gi&aacute;c BEDF c&oacute; DE//BF v&agrave; DE=BF (chứng minh tr&ecirc;n)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo></mstyle></math>Tứ gi&aacute;c BEDF l&agrave; h&igrave;nh b&igrave;nh h&agrave;nh (theo dấu hiệu nhận biết h&igrave;nh b&igrave;nh h&agrave;nh).<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>B</mi><mo>&#8290;</mo><mi>E</mi><mo>=</mo><mi>D</mi><mo>&#8290;</mo><mi>F</mi></mstyle></math> (t&iacute;nh chất h&igrave;nh b&igrave;nh h&agrave;nh).<br />C&aacute;ch kh&aacute;c:<br />+ABCD l&agrave; h&igrave;nh b&igrave;nh h&agrave;nh<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>&#8658;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>=</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>,</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi><mo>=</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>,</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>=</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover></math></p> <p>+E l&agrave; trung điểm của <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mo>&#8658;</mo><mi>A</mi><mo>&#8290;</mo><mi>E</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi></math>&nbsp;(t&iacute;nh chất trung điểm)<br />F l&agrave; trung điểm của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8658;</mo><mi>B</mi><mo>&#8290;</mo><mi>F</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> (t&iacute;nh chất trung điểm)<br />M&agrave; AD=BC (chứng minh tr&ecirc;n) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>A</mi><mo>&#8290;</mo><mi>E</mi><mo>=</mo><mi>C</mi><mo>&#8290;</mo><mi>F</mi></mstyle></math><br />+ X&eacute;t <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>E</mi><mo>&#8290;</mo><mi>B</mi></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>F</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>=</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi><mo>,</mo><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>=</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>,</mo><mi>A</mi><mo>&#8290;</mo><mi>E</mi><mo>=</mo><mi>C</mi><mo>&#8290;</mo><mi>F</mi></math> (chứng minh tr&ecirc;n)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mi mathvariant="normal">&#916;</mi><mi>A</mi><mi>E</mi><mi>B</mi><mo>=</mo><mi mathvariant="normal">&#916;</mi><mi>C</mi><mi>F</mi><mi>D</mi><mrow><mo>(</mo><mi>c</mi><mo>.</mo><mi>g</mi><mo>.</mo><mi>c</mi><mo>)</mo></mrow></math></p> <p><span id="MJXc-Node-303" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">&rArr;</span></span><span id="MJXc-Node-304" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-305" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-306" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-307" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-308" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-309" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></p>
Xem lời giải bài tập khác cùng bài