Bài 6: Phép Trừ Các Phân Thức Đại Số
Hướng dẫn Giải Bài 35 (Trang 50, SGK Toán 8, Tập 1)
<p>Thực hiện c&aacute;c ph&eacute;p t&iacute;nh:</p> <p>a)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfenced></mrow><mrow><mn>9</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>;</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; b) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow><mrow><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math>.</p> <p><strong>Giải</strong></p> <p>a)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfenced></mrow><mrow><mn>9</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>-</mo><mfenced><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfenced></mrow><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfenced></mrow><mrow><mo>-</mo><mfenced><mrow><mn>9</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced></mrow></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfenced></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>9</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced></mfrac><mo>+</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>+</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo>+</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>6</mn></mrow><mrow><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><mo>(</mo><mi>x</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mrow><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>2</mn><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math></p> <p>b)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow><mrow><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo>+</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>-</mo><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></mrow><mrow><mo>-</mo><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced></mrow></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo>+</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>-</mo><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo>+</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>-</mo><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></mrow><mrow><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mfenced><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>-</mo><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>-</mo><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>)</mo></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>3</mn></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>+</mo><mn>3</mn><mi>x</mi><mo>+</mo><mn>3</mn></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mi>x</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>3</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math></p>
Hướng dẫn Giải Bài 35 (Trang 50, SGK Toán 8, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 35 (Trang 50, SGK Toán 8, Tập 1)
GV: GV colearn