Trang chủ / Giải bài tập / Lớp 8 / Toán học / Bài 4: Khái niệm hai tam giác đồng dạng
Bài 4: Khái niệm hai tam giác đồng dạng
Hướng dẫn giải Bài 24 (Trang 72 SGK Toán Hình học 8, Tập 2)
<p>Đề bài<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup><mo>⁢</mo><mo>~</mo><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>'</mo><mo>'</mo><mi>B</mi><mo>'</mo><mo>'</mo><mi>C</mi><mo>'</mo><mo>'</mo></mstyle></math> theo tỉ số đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>k</mi><mn>1</mn></msub></mstyle></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><msup><mi>A</mi><mrow><mo>'</mo><mo>'</mo></mrow></msup><mo>⁢</mo><msup><mi>B</mi><mrow><mo>'</mo><mo>'</mo></mrow></msup><mo>⁢</mo><msup><mi>C</mi><mrow><mo>'</mo><mo>'</mo></mrow></msup><mo>⁢</mo><mo>~</mo><mi mathvariant="normal">Δ</mi><mi>A</mi><mi>B</mi><mi>C</mi></mstyle></math> theo tỉ số đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>k</mi><mn>2</mn></msub><mo>.</mo></math> Hỏi tam giác <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></math> đồng dạng với tam giác ABC theo tỉ số nào?</p>
<p>Lời giải chi tiết<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup><mo>⁢</mo><mo>~</mo><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>'</mo><mo>'</mo><mo>⁢</mo><mi>B</mi><mo>'</mo><mo>'</mo><mo>⁢</mo><mi>C</mi><mo>'</mo><mo>'</mo></mstyle></math> " theo tỉ số đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>k</mi><mn>1</mn></msub><mo>=</mo><mfrac><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup></mrow><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow></mfrac></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><msup><mi>A</mi><mrow><mo>'</mo><mo>'</mo></mrow></msup><mo>⁢</mo><msup><mi>B</mi><mrow><mo>'</mo><mo>'</mo></mrow></msup><mo>⁢</mo><msup><mi>C</mi><mrow><mo>'</mo><mo>'</mo></mrow></msup><mo>⁢</mo><mo>~</mo><mi mathvariant="normal">Δ</mi><mi>A</mi><mi>B</mi><mi>C</mi></mstyle></math> theo tỉ số đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>k</mi><mn>2</mn></msub><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow></mfrac></mstyle></math><br />Theo tính chất 3 của hai tam giác đồng dạng thì <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup><mo>⁢</mo><mo>~</mo><mo>⁢</mo><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi><mo>.</mo></math><br />Tỉ số đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup></mrow><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>.</mo><msup><mi>A</mi><mo>′′</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>′′</mo></msup></mrow><mrow><msup><mi>A</mi><mo>′′</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>′′</mo></msup><mo>.</mo><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow></mfrac></math> </p>
<p><span class="mce-nbsp-wrap" contenteditable="false"> </span><span class="mce-nbsp-wrap" contenteditable="false"> </span><span class="mce-nbsp-wrap" contenteditable="false"> </span><span class="mce-nbsp-wrap" contenteditable="false"> </span><span class="mce-nbsp-wrap" contenteditable="false"> </span><span class="mce-nbsp-wrap" contenteditable="false"> </span><span class="mce-nbsp-wrap" contenteditable="false"> </span><span class="mce-nbsp-wrap" contenteditable="false"> </span><span class="mce-nbsp-wrap" contenteditable="false"> </span> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mstyle displaystyle="true"><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup></mstyle><mstyle displaystyle="true"><msup><mi>A</mi><mo>′′</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>′′</mo></msup></mstyle></mfrac><mo>.</mo><mfrac><mstyle displaystyle="true"><msup><mi>A</mi><mo>′′</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>′′</mo></msup></mstyle><mstyle displaystyle="true"><mi>A</mi><mo>⁢</mo><mi>B</mi></mstyle></mfrac></math><br />Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>k</mi><mo>=</mo><msub><mi>k</mi><mn>1</mn></msub><mo>⋅</mo><msub><mi>k</mi><mn>2</mn></msub></mstyle></math>.</p>