Trang chủ / Giải bài tập / Lớp 8 / Toán học / Bài 4: Khái niệm hai tam giác đồng dạng
Bài 4: Khái niệm hai tam giác đồng dạng
Hướng dẫn giải Bài 26 (Trang 72 SGK Toán Hình học 8, Tập 2)
<p>Đề bài<br />Cho tam giác ABC vẽ tam giác <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></math> đồng dạng với tam giác ABC theo tỉ số đồng dạng là <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>k</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mstyle></math></p>
<p><strong class="content_detail">Lời giải chi tiết</strong></p>
<p><strong class="content_detail"><img src="https://img.loigiaihay.com/picture/2018/0718/b26-trang-72-sgk-toan-8-t2-c2.jpg" /></strong></p>
<p><strong class="content_detail"><img src="https://img.loigiaihay.com/picture/2019/0314/h6-bai-26-sgk-toan-8-t2.jpg" /></strong></p>
<p><span class="content_detail">Trên cạnh AB lấy điểm M sao cho <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>⁢</mo><mi>M</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>.</mo></math><br />Từ M kẻ đường song song với BC cắt AC tại N.<br />Ta có <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>M</mi><mo>⁢</mo><mi>N</mi><mo>⁢</mo><mo>~</mo><mo>⁢</mo><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> theo tỉ số đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>k</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>M</mi></mrow><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow></mfrac><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mstyle></math><br />*) Dựng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup><mo>=</mo><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>M</mi><mo>⁢</mo><mi>N</mi></mstyle></math> (theo trường hợp cạnh cạnh cạnh)<br />- Dựng tia <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><mi>x</mi></mstyle></math>, trên tia <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><mi>x</mi></mstyle></math> lấy <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>B</mi><mo>'</mo></msup></mstyle></math> sao cho <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>=</mo><mi>A</mi><mo>⁢</mo><mi>M</mi></mstyle></math><br />- Dựng cung tròn tâm <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>A</mi><mo>'</mo></msup></mstyle></math> bán kính AN và cung tròn tâm <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>B</mi><mo>'</mo></msup></mstyle></math> bán kính MN, hai cung tròn cắt nhau tại <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>C</mi><mo>'</mo></msup></mstyle></math><br />- Nối <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup><mo>,</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></math> ta được tam giác <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup></mstyle></math> phải dựng.<br />Mà <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>M</mi><mo>⁢</mo><mi>N</mi><mo>⁢</mo><mo>~</mo><mo>⁢</mo><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> theo tỉ số đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>k</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mstyle></math> nên<br /></span><span class="content_detail"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><msup><mi>A</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>B</mi><mo>'</mo></msup><mo>⁢</mo><msup><mi>C</mi><mo>'</mo></msup><mo>~</mo><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> theo tỉ số đồng dạng <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo></math></span><strong class="content_detail"><br /></strong></p>