Hỏi gia sư
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 8 / Toán học /
Bài 3: Tính Chất Đường Phân Giác Của Tam Giác
Bài 3: Tính Chất Đường Phân Giác Của Tam Giác
Hướng dẫn giải Bài 21 (Trang 68 SGK Toán Hình học 8, Tập 2)
<p><strong class="content_question">Đề bài</strong></p> <p>a) Cho tam giác <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi></math>"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span></span> với đường trung tuyến <span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>M</mi></math>"><span id="MJXc-Node-6" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-7" class="mjx-mrow"><span id="MJXc-Node-8" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math></span></span> và đường phân giác <span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi></math>"><span id="MJXc-Node-10" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-11" class="mjx-mrow"><span id="MJXc-Node-12" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi></math></span></span>. Tính diện tích tam giác <span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mi>M</mi></math>"><span id="MJXc-Node-14" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-15" class="mjx-mrow"><span id="MJXc-Node-16" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-17" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span></span></span></span>, biết <span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mo>=</mo><mi>m</mi><mo>,</mo><mi>A</mi><mi>C</mi><mo>=</mo><mi>n</mi><mspace width="thickmathspace" /><mo stretchy="false">(</mo><mi>n</mi><mo>&gt;</mo><mi>m</mi><mo stretchy="false">)</mo></math>"><span id="MJXc-Node-19" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-20" class="mjx-mrow"><span id="MJXc-Node-21" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-23" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-24" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">m</span></span><span id="MJXc-Node-25" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-26" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-27" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-28" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-29" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">n</span></span><span id="MJXc-Node-30" class="mjx-mspace"></span><span id="MJXc-Node-31" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">(</span></span><span id="MJXc-Node-32" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">n</span></span><span id="MJXc-Node-33" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">></span></span><span id="MJXc-Node-34" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">m</span></span><span id="MJXc-Node-35" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">)</span></span></span></span></span> và diện tích của tam giác <span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi></math>"><span id="MJXc-Node-36" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-37" class="mjx-mrow"><span id="MJXc-Node-38" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-39" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-40" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span></span> là <span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math></span></span>.</p> <p>b) Cho <span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>7</mn><mi>c</mi><mi>m</mi><mo>,</mo><mi>m</mi><mo>=</mo><mn>3</mn><mi>c</mi><mi>m</mi></math>"><span id="MJXc-Node-44" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-45" class="mjx-mrow"><span id="MJXc-Node-46" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">n</span></span><span id="MJXc-Node-47" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-48" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">7</span></span><span id="MJXc-Node-49" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-50" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">m</span></span><span id="MJXc-Node-51" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-52" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">m</span></span><span id="MJXc-Node-53" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-54" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">3</span></span><span id="MJXc-Node-55" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-56" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">m</span></span></span></span></span>. Hỏi diện tích tam giác <span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mi>M</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mi>M</mi></math></span></span> chiếm bao nhiêu phần trăm diện tích tam giác <span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi></math>"><span id="MJXc-Node-62" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-63" class="mjx-mrow"><span id="MJXc-Node-64" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-65" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-66" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span></span>.</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><img src="https://img.loigiaihay.com/picture/2019/0314/bai-21-trang-68-sgk-toan-8-t2.jpg" /></p> <p>a) Ta có AD là đường phân giác của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> (gt) nên<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><mrow><mi>B</mi><mo>⁢</mo><mi mathvariant="normal">D</mi></mrow><mrow><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mrow><mi>A</mi><mo>⁢</mo><mi>C</mi></mrow></mfrac></mstyle></math> (Tính chất đường phân giác của tam giác) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mrow></msub><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow></msub></mfrac><mo>=</mo><mfrac><mrow><mi>D</mi><mo>⁢</mo><mi>B</mi></mrow><mrow><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow></mfrac></mstyle></math> (do hai tam giác có chung chiều cao từ' đỉnh A)</p> <p>Nên <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⁢</mo><mfrac><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mrow></msub><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow></msub></mfrac><mo>=</mo><mfrac><mrow><mi>D</mi><mo>⁢</mo><mi>B</mi></mrow><mrow><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi></mrow><mrow><mi>A</mi><mo>⁢</mo><mi>C</mi></mrow></mfrac><mo>=</mo><mfrac><mi>m</mi><mi>n</mi></mfrac><mo>⁢</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mfrac><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow></msub><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mrow></msub></mfrac><mo>=</mo><mpadded><mfrac><mi>n</mi><mi>m</mi></mfrac></mpadded><mo>⁢</mo><mspace linebreak="newline"/><mo>⇒</mo><mfrac><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow></msub><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mrow></msub></mfrac><mo>+</mo><mn>1</mn><mo>=</mo><mfrac><mi>n</mi><mi>m</mi></mfrac><mo>+</mo><mpadded><mn>1</mn></mpadded><mo>⁢</mo><mspace linebreak="newline"/><mo>⇒</mo><mfrac><mrow><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mrow></msub></mrow><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mrow></msub></mfrac><mo>=</mo><mpadded><mfrac><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow><mi>m</mi></mfrac></mpadded><mo>⁢</mo><mspace linebreak="newline"/><mo>⇒</mo><mfrac><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mrow></msub><mrow><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mrow></msub></mrow></mfrac><mo>=</mo><mfrac><mi>m</mi><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></mfrac><mo>⁢</mo></math></p> <p>hay <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mrow></msub><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow></msub></mfrac><mo>=</mo><mpadded><mfrac><mi>m</mi><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></mfrac></mpadded><mo>⁢</mo><mspace linebreak="newline"/><mo>⇒</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>m</mi><mo>⁢</mo><mi>S</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></mfrac><mo>⁢</mo></math><br />Vì AM là trung tuyến của <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mrow><mo>(</mo><mi>gt</mi><mo>)</mo></mrow><mo>⇒</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>M</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow></msub></mrow><mo>.</mo></math><br />Có AB<AC(m<n) và AD là đường phân giác, AM là đường trung tuyến kẻ từ' A nên AD nằm giữa AB và AM.<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>M</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>M</mi></mrow></msub><mo>-</mo><mpadded><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>D</mi></mrow></msub></mpadded><mo>⁢</mo><mspace linebreak="newline"/><mo>⇒</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>M</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><mi>S</mi><mo>-</mo><mfrac><mi>m</mi><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></mfrac><mo>⁢</mo><mi>S</mi><mo>=</mo><mfrac><mrow><mi>S</mi><mo>⁢</mo><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>-</mo><mn>2</mn><mo>⁢</mo><mi>m</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mo>⁢</mo><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow></mrow></mfrac><mo>⁢</mo></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>M</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>S</mi><mo>⁢</mo><mrow><mo>(</mo><mi>n</mi><mo>-</mo><mi>m</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mo>⁢</mo><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math><br />b) Khi n=7cm, m=3cm ta có:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi mathvariant="normal">D</mi><mo>⁢</mo><mi>M</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>7</mn><mo>-</mo><mn>3</mn></mrow><mrow><mn>2</mn><mo>⁢</mo><mrow><mo>(</mo><mn>7</mn><mo>+</mo><mn>3</mn><mo>)</mo></mrow></mrow></mfrac><mo>.</mo><mi>S</mi><mo>=</mo><mfrac><mi>S</mi><mn>5</mn></mfrac><mo>=</mo><mfrac><mrow><mn>20</mn><mo>.</mo><mi>S</mi></mrow><mn>100</mn></mfrac><mo>=</mo><mn>20</mn><mo>%</mo><mo>⁢</mo><mi>S</mi></mstyle></math><br />Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>M</mi></mrow></msub><mo>=</mo><mn>20</mn><mo>%</mo><mo>⁢</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mrow></msub><mo>.</mo></math></p>
Xem lời giải bài tập khác cùng bài
Hướng dẫn giải Bài 16 (Trang 67 SGK Toán Hình học 8, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 17 (Trang 67 SGK Toán Hình học 8, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 18 (Trang 68 SGK Toán Hình học 8, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 19 (Trang 68 SGK Toán Hình học 8, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 20 (Trang 68 SGK Toán Hình học 8, Tập 2)
Xem lời giải
Hướng dẫn giải Bài 22 (Trang 68 SGK Toán Hình học 8, Tập 2)
Xem lời giải