Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 7 / Toán /
Bài tập cuối chương 1
Bài tập cuối chương 1
Hướng dẫn Giải Bài 4 (Trang 27, SGK Toán 7, Tập 1, Bộ Chân Trời Sáng Tạo)
<p><strong>Bài 4 (Trang 27, SGK Toán 7, Tập 1 - Bộ Chân Trời Sáng Tạo):</strong></p> <p>Tính giá trị các biểu thức sau:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>)</mo><mo> </mo><mi>A</mi><mo> </mo><mo>=</mo><mo> </mo><mo>[</mo><mo>(</mo><mo>-</mo><mn>0</mn><mo>,</mo><mn>5</mn><mo>)</mo><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>3</mn><mn>5</mn></mfrac><mo>]</mo><mo>:</mo><mo>(</mo><mo>-</mo><mn>3</mn><mo>)</mo><mo> </mo><mo>+</mo><mo> </mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mo>(</mo><mo>-</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>)</mo><mo>:</mo><mo>(</mo><mo>-</mo><mn>2</mn><mo>)</mo><mo>;</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>)</mo><mo> </mo><mi>B</mi><mo> </mo><mo>=</mo><mo> </mo><mfenced><mrow><mfrac><mn>2</mn><mn>25</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>036</mn></mrow></mfenced><mo>:</mo><mfrac><mn>11</mn><mn>50</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfenced open="[" close="]"><mfenced><mrow><mn>3</mn><mfrac><mn>1</mn><mn>4</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mn>2</mn><mfrac><mn>4</mn><mn>9</mn></mfrac></mrow></mfenced></mfenced><mo>.</mo><mfrac><mn>9</mn><mn>29</mn></mfrac><mo>.</mo></math></p> <p> </p> <p><span style="text-decoration: underline;"><em><strong>Hướng dẫn giải:</strong></em></span></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>)</mo><mo> </mo><mi>A</mi><mo> </mo><mo>=</mo><mo> </mo><mfenced open="[" close="]"><mrow><mo>(</mo><mo>-</mo><mn>0</mn><mo>,</mo><mn>5</mn><mo>)</mo><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>3</mn><mn>5</mn></mfrac></mrow></mfenced><mo>:</mo><mo>(</mo><mo>-</mo><mn>3</mn><mo>)</mo><mo> </mo><mo>+</mo><mo> </mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>6</mn></mfrac></mrow></mfenced><mo>:</mo><mo>(</mo><mo>-</mo><mn>2</mn><mo>)</mo><mspace linebreak="newline"/><mi>A</mi><mo> </mo><mo>=</mo><mo> </mo><mfenced open="[" close="]"><mrow><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>3</mn><mn>5</mn></mfrac></mrow></mfenced><mo>:</mo><mo>(</mo><mo>-</mo><mn>3</mn><mo>)</mo><mo> </mo><mo>+</mo><mo> </mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>6</mn></mfrac><mo>.</mo><mfrac><mn>1</mn><mrow><mo>-</mo><mn>2</mn></mrow></mfrac><mspace linebreak="newline"/><mi>A</mi><mo> </mo><mo>=</mo><mo> </mo><mfenced open="[" close="]"><mrow><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>10</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>6</mn><mn>10</mn></mfrac></mrow></mfenced><mo>:</mo><mo>(</mo><mo>-</mo><mn>3</mn><mo>)</mo><mo> </mo><mo>+</mo><mo> </mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>1</mn><mn>12</mn></mfrac><mspace linebreak="newline"/><mi>A</mi><mo> </mo><mo>=</mo><mfrac><mrow><mo>-</mo><mn>11</mn></mrow><mn>10</mn></mfrac><mo>.</mo><mfrac><mn>1</mn><mrow><mo>-</mo><mn>3</mn></mrow></mfrac><mo> </mo><mo>+</mo><mo> </mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>1</mn><mn>12</mn></mfrac><mspace linebreak="newline"/><mi>A</mi><mo> </mo><mo>=</mo><mfrac><mrow><mo> </mo><mn>11</mn></mrow><mn>30</mn></mfrac><mo> </mo><mo>+</mo><mo> </mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>1</mn><mn>12</mn></mfrac><mspace linebreak="newline"/><mi>A</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>37</mn><mn>60</mn></mfrac><mspace linebreak="newline"/><mi>V</mi><mi>ậ</mi><mi>y</mi><mo> </mo><mi>A</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>37</mn><mn>60</mn></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>)</mo><mo> </mo><mi>B</mi><mo> </mo><mo>=</mo><mo> </mo><mfenced><mrow><mfrac><mn>2</mn><mn>25</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mn>0</mn><mo>,</mo><mn>036</mn></mrow></mfenced><mo>:</mo><mfrac><mn>11</mn><mn>50</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfenced open="[" close="]"><mfenced><mrow><mn>3</mn><mfrac><mn>1</mn><mn>4</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mn>2</mn><mfrac><mn>4</mn><mn>9</mn></mfrac></mrow></mfenced></mfenced><mo>.</mo><mfrac><mn>9</mn><mn>29</mn></mfrac><mspace linebreak="newline"/><mi>B</mi><mo> </mo><mo>=</mo><mo> </mo><mfenced><mrow><mfrac><mn>2</mn><mn>25</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>9</mn><mn>250</mn></mfrac></mrow></mfenced><mo>:</mo><mfrac><mn>11</mn><mn>50</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfenced open="[" close="]"><mfenced><mrow><mfrac><mn>13</mn><mn>4</mn></mfrac><mo>-</mo><mfrac><mn>22</mn><mn>9</mn></mfrac></mrow></mfenced></mfenced><mo>.</mo><mfrac><mn>9</mn><mn>29</mn></mfrac><mspace linebreak="newline"/><mi>B</mi><mo> </mo><mo>=</mo><mo> </mo><mfenced><mrow><mfrac><mn>20</mn><mn>250</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>9</mn><mn>250</mn></mfrac></mrow></mfenced><mo>:</mo><mfrac><mn>11</mn><mn>50</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfenced open="[" close="]"><mfenced><mrow><mfrac><mn>117</mn><mn>36</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>88</mn><mn>36</mn></mfrac></mrow></mfenced></mfenced><mo>.</mo><mfrac><mn>9</mn><mn>29</mn></mfrac><mspace linebreak="newline"/><mi>B</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>11</mn><mn>250</mn></mfrac><mo>:</mo><mfrac><mn>11</mn><mn>50</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>29</mn><mn>36</mn></mfrac><mo>.</mo><mfrac><mn>9</mn><mn>29</mn></mfrac><mspace linebreak="newline"/><mi>B</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>11</mn><mn>250</mn></mfrac><mo>.</mo><mfrac><mn>50</mn><mn>11</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>9</mn><mn>36</mn></mfrac><mspace linebreak="newline"/><mi>B</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>1</mn><mn>5</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mspace linebreak="newline"/><mi>B</mi><mo> </mo><mo>=</mo><mo> </mo><mfrac><mn>4</mn><mn>20</mn></mfrac><mo> </mo><mo>-</mo><mo> </mo><mfrac><mn>5</mn><mn>20</mn></mfrac><mo> </mo><mo>=</mo><mo> </mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mn>20</mn></mfrac></math></p>
Xem lời giải bài tập khác cùng bài
Hướng dẫn Giải Bài 1 (Trang 27, SGK Toán 7, Tập 1, Bộ Chân Trời Sáng Tạo)
Xem lời giải
Hướng dẫn Giải Bài 2 (Trang 27 SGK Toán 7, Tập 1, Bộ Chân Trời Sáng Tạo)
Xem lời giải
Hướng dẫn Giải Bài 3 (Trang 27, SGK Toán 7, Tập 1, Bộ Chân Trời Sáng Tạo)
Xem lời giải
Hướng dẫn Giải Bài 5 (Trang 27 SGK Toán 7, Tập 1, Bộ Chân Trời Sáng Tạo)
Xem lời giải
Hướng dẫn Giải Bài 6 (Trang 27 SGK Toán 7, Tập 1, Bộ Chân Trời Sáng Tạo)
Xem lời giải
Hướng dẫn Giải Bài 7 (Trang 28, SGK Toán 7, Tập 1, Bộ Chân Trời Sáng Tạo)
Xem lời giải
Hướng dẫn Giải Bài 8 (Trang 28, SGK Toán 7, Tập 1, Bộ Chân Trời Sáng Tạo)
Xem lời giải
Hướng dẫn Giải Bài 9 (Trang 28, SGK Toán 7, Tập 1, Bộ Chân Trời Sáng Tạo)
Xem lời giải
Hướng dẫn Giải Bài 10 (Trang 28, SGK Toán 7, Tập 1, Bộ Chân Trời Sáng Tạo)
Xem lời giải
Hướng dẫn Giải Bài 11 (Trang 28, SGK Toán 7, Tập 1, Bộ Chân Trời Sáng Tạo)
Xem lời giải