Bài 9 (Trang 120 SGK Toán 7, Bộ Cánh diều, Tập 2)
Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Các điểm A, G, H, I, O phân biệt. Chứng minh rằng:
a) Nếu tam giác ABC cân tại A thì các điểm A, G, H, I, O cùng nằm trên một đường thẳng.
b) Nếu các điểm A, H, I cùng nằm trên một đường thẳng thì tam giác ABC cân tại A.
Hướng dẫn giải
a)
Gọi K là trung điểm của BC.
Do G là trọng tâm của tam giác ABC nên A, G, K thẳng hàng (1).
Do K là trung điểm của BC nên BK = CK.
Trong tam giác ABC cân tại A có AK là đường trung tuyến.
Xét tam giác ABK và tam giác ACK có:
AB = AC (tam giác ABC cân);
AK chung;
BK = KC (K là trung điểm của BC).
(c - c - c)
(vì ba điểm B, D, C thẳng hàng)
Vậy AK là đường cao của tam giác và đường phân giác của góc A.
Suy ra: AK là đường trung trực của tam giác ABC.
Vậy AK là đường trung tuyến, đường cao, đường phân giác, đường trung trực của tam giác ABC.
Mà G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực nên A, G, H, I, O cùng nằm trên một đường thẳng.
Vậy nếu tam giác ABC cân tại A thì các điểm A, G, H, I, O cùng nằm trên một đường thẳng.
b)
Gọi K là chân đường cao kẻ từ H vuông BC.
H là trực tâm của tam giác ABC nên A, H, K thẳng hàng.
Mà A, H, I thẳng hàng nên A, H, I, K thẳng hàng.
Mà AI là tia phân giác của AK là đường phân giác của
Xét ∆AKB vuông tại K và ∆AKC vuông tại K có:
AK chung
Do đó ∆AKB = ∆AKC (góc nhọn - cạnh góc vuông).
Suy ra AB = AC (2 cạnh tương ứng).
Tam giác ABC có AB = AC nên tam giác ABC cân tại A.