SGK Toán 7 - Cánh diều
(Mục lục SGK Toán 7 - Cánh diều)
Bài tập cuối chương 7
Hướng dẫn Giải Bài 4 (Trang 119 SGK Toán 7, Bộ Cánh diều, Tập 2)

Bài 4 (Trang 119 SGK Toán 7, Bộ Cánh diều, Tập 2)

Cho hai tam giác ABC và MNP có: AB = MN, BC = NP, CA = PM. Gọi I và K lần lượt là trung điểm của BC và NP. Chứng minh: AI = MK.

 

Hướng dẫn giải

Xét ∆ABC và ∆MNP có:

AB = MN (theo giả thiết).

BC = NP (theo giả thiết).

CA = PM (theo giả thiết).

Do đó ∆ABC = ∆MNP (c - c - c).

 ACB^ = MPN^

 

Do I, K lần lượt là trung điểm của BC và NP mà BC = NP nên CI = PK.

Xét ∆ACI và ∆MPK có:

AC = MP (theo giả thiết).

ACI^ = MPK^ (cmt)

CI = PK (chứng minh trên).

Do đó ∆ACI = ∆MPK (c - g - c).

Suy ra AI = MK (2 cạnh tương ứng).

 

Xem lời giải bài tập khác cùng bài
Chuyên đề bổ trợ kiến thức lớp 7
action
thumnail

Chuyên đề: Số hữu tỉ, số thực

Lớp 7Toán35 video
action
thumnail

Chuyên đề: Hàm số và đồ thị

Lớp 7Toán18 video
action
thumnail

Chuyên đề: Thống kê

Lớp 7Toán10 video