Bài 7: Tam giác cân
Hướng dẫn Giải Bài 4 (Trang 96 SGK Toán 7, Bộ Cánh diều, Tập 2)
<p><strong>B&agrave;i 4 (Trang 96 SGK To&aacute;n 7, Bộ C&aacute;nh diều, Tập 2)</strong></p> <p>Trong H&igrave;nh 76, cho biết c&aacute;c tam gi&aacute;c ABD v&agrave; BCE l&agrave; c&aacute;c tam gi&aacute;c đều v&agrave; A, B, C thẳng h&agrave;ng. Chứng minh rằng:</p> <p><img class="wscnph" style="max-width: 100%; display: block; margin-left: auto; margin-right: auto;" src="https://static.colearn.vn:8413/v1.0/upload/library/12102022/bai-4-trand-96-toan-lop-7-tap-2-gq9idI.png" /></p> <p>a) AD // BE v&agrave; BD // CE;</p> <p>b) <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi><mi>E</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>D</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>120</mn><mo>&#176;</mo></math>;</p> <p>c) AE = CD.</p> <p>&nbsp;</p> <p><em><span style="text-decoration: underline;"><strong>Hướng dẫn giải</strong></span></em></p> <p>a) Tam gi&aacute;c ABD đều n&ecirc;n AB = BD = DA v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>D</mi><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>D</mi><mi>A</mi><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>60</mn><mo>&#176;</mo></math></p> <p>Tam gi&aacute;c BCE đều n&ecirc;n BC = CE = EB v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>B</mi><mi>C</mi><mi>E</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>E</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>E</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>60</mn><mo>&#176;</mo></math></p> <p>&nbsp;</p> <p>Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#160;</mo><mover><mrow><mi>D</mi><mi>A</mi><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>&#160;</mo><mover><mrow><mi>E</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>(</mo><mo>=</mo><mn>60</mn><mo>&#176;</mo><mo>)</mo></math>, m&agrave; 2 g&oacute;c n&agrave;y ở vị tr&iacute; đồng vị n&ecirc;n AD // BE.</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi><mi>D</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>C</mi><mi>E</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>(</mo><mo>=</mo><mn>60</mn><mo>&#176;</mo><mo>)</mo></math>, m&agrave; 2 g&oacute;c n&agrave;y ở vị tr&iacute; đồng vị n&ecirc;n BD // CE.</p> <p>&nbsp;</p> <p>b)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>A</mi><mi>B</mi><mi>E</mi></mrow><mo>^</mo></mover></math> l&agrave; g&oacute;c ngo&agrave;i tại đỉnh B của ∆EBC <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>B</mi><mi>E</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>C</mi><mi>E</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mover><mrow><mi>B</mi><mi>E</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>60</mn><mo>&#176;</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>60</mn><mo>&#176;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>120</mn><mo>&#176;</mo><mo>.</mo></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>D</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover></math>&nbsp;l&agrave; g&oacute;c ngo&agrave;i tại đỉnh B của ∆ABD<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mo>&#160;</mo><mover><mrow><mi>D</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>D</mi><mi>A</mi><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>D</mi><mi>B</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>60</mn><mo>&#176;</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>60</mn><mo>&#176;</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>120</mn><mo>&#176;</mo><mo>.</mo></math></p> <p>&nbsp;</p> <p>c)&nbsp;X&eacute;t ∆DBC v&agrave; ∆ABE c&oacute;:</p> <p>DB = AB (chứng minh tr&ecirc;n).</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>D</mi><mi>B</mi><mi>C</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mover><mrow><mi>A</mi><mi>B</mi><mi>E</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mfenced><mrow><mo>=</mo><mn>120</mn><mo>&#176;</mo></mrow></mfenced></math></p> <p>BC = BE (chứng minh tr&ecirc;n).</p> <p>Suy ra ∆DBC = ∆ABE(c - g - c).</p> <p>Do đ&oacute; CD = EA (2 cạnh tương ứng).</p> <p>Vậy AE = CD.</p>
Xem lời giải bài tập khác cùng bài