Bài tập cuối chương III
Hướng dẫn giải Bài 3.12 (Trang 44 SGK Toán 10, Bộ Kết nối tri thức, Tập 1)
<p>Cho tam gi&aacute;c ABC c&oacute;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>B</mi><mo>^</mo></mover><mo>=</mo><mn>135</mn><mo>&#176;</mo><mo>.</mo></math> Khẳng định n&agrave;o sau đ&acirc;y l&agrave; đ&uacute;ng?</p> <p>a)&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>.</mo><mo>&#160;</mo><mi>S</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>c</mi><mi>a</mi><mo>.</mo><mspace linebreak="newline"/><mi>B</mi><mo>.</mo><mo>&#160;</mo><mi>S</mi><mo>=</mo><mfrac><mrow><mo>-</mo><msqrt><mn>2</mn></msqrt></mrow><mn>4</mn></mfrac><mi>a</mi><mi>c</mi><mo>.</mo><mspace linebreak="newline"/><mi>C</mi><mo>.</mo><mo>&#160;</mo><mi>S</mi><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>4</mn></mfrac><mi>b</mi><mi>c</mi><mo>.</mo><mspace linebreak="newline"/><mi>D</mi><mo>.</mo><mo>&#160;</mo><mi>S</mi><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>4</mn></mfrac><mi>c</mi><mi>a</mi><mo>.</mo></math></p> <p>b)</p> <p>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>.</mo><mo>&#160;</mo><mi>R</mi><mo>=</mo><mfrac><mi>&#945;</mi><mrow><mi>sin</mi><mi>A</mi></mrow></mfrac><mo>.</mo><mspace linebreak="newline"/><mi>B</mi><mo>.</mo><mo>&#160;</mo><mi>R</mi><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mi>b</mi><mspace linebreak="newline"/><mi>C</mi><mo>.</mo><mo>&#160;</mo><mi>R</mi><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mi>c</mi><mspace linebreak="newline"/><mi>D</mi><mo>.</mo><mo>&#160;</mo><mi>R</mi><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mi>a</mi></math></p> <p>c)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>.</mo><mo>&#160;</mo><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><msqrt><mn>2</mn></msqrt><mi>a</mi><mi>b</mi><mo>.</mo><mspace linebreak="newline"/><mi>B</mi><mo>.</mo><mo>&#160;</mo><mfrac><mi>b</mi><mrow><mi>sin</mi><mi>A</mi></mrow></mfrac><mo>=</mo><mfrac><mi>a</mi><mrow><mi>sin</mi><mi>B</mi></mrow></mfrac><mspace linebreak="newline"/><mi>C</mi><mo>.</mo><mo>&#160;</mo><mi>sin</mi><mi>B</mi><mo>=</mo><mo>-</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mspace linebreak="newline"/><mi>D</mi><mo>.</mo><mo>&#160;</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>c</mi><mi>a</mi><mo>.</mo><mi>cos</mi><mn>135</mn><mo>&#176;</mo></math></p> <p><span style="text-decoration: underline;"><em><strong>Lời giải:</strong></em></span></p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/14062022/111-iXKkXy.png" width="419" height="194" /></p> <p>a) Diện t&iacute;ch tam gi&aacute;c ABC:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mi>a</mi><mo>.</mo><mi>c</mi><mo>.</mo><mi>sin</mi><mi>B</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mi>a</mi><mo>.</mo><mi>c</mi><mo>.</mo><mi>sin</mi><mn>135</mn><mo>&#176;</mo><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>4</mn></mfrac><mi>a</mi><mi>c</mi><mo>.</mo></math></p> <p>Chọn D.</p> <p>b) Ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>a</mi><mrow><mi>sin</mi><mi>A</mi></mrow></mfrac><mo>=</mo><mfrac><mi>b</mi><mrow><mi>sin</mi><mi>B</mi></mrow></mfrac><mo>=</mo><mfrac><mi>c</mi><mrow><mi>sin</mi><mi>C</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mi>R</mi><mo>&#160;</mo><mo>(</mo><mi>&#273;</mi><mi>&#7883;</mi><mi>n</mi><mi>h</mi><mo>&#160;</mo><mi>l</mi><mi>&#237;</mi><mo>&#160;</mo><mi>sin</mi><mo>)</mo><mspace linebreak="newline"/><mo>&#8658;</mo><mi>R</mi><mo>=</mo><mfrac><mi>b</mi><mrow><mn>2</mn><mi>sin</mi><mi>B</mi></mrow></mfrac><mo>=</mo><mfrac><mi>b</mi><mrow><mn>2</mn><mi>sin</mi><mn>135</mn><mo>&#176;</mo></mrow></mfrac><mo>=</mo><mfrac><mi>b</mi><msqrt><mn>2</mn></msqrt></mfrac><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mi>b</mi><mo>.</mo></math></p> <p>Chọn B.</p> <p>c) Theo định l&iacute; cos, ta c&oacute;:</p> <p>b<sup>2</sup>&nbsp;= a<sup>2</sup>&nbsp;+ c<sup>2</sup>&nbsp;&ndash; 2ac.cosB = a<sup>2</sup>&nbsp;+ c<sup>2</sup>&nbsp;&ndash; 2ac.cos135<sup>0</sup>.</p> <p>Chọn D.</p>
Xem lời giải bài tập khác cùng bài