Bài tập cuối chương VII
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Bài 5 (Trang 103 SGK Toán 10, Bộ Cánh diều, Tập 2)</span></div> </div> </div> </div> </div>
<p><strong>B&agrave;i 5 (Trang 103 SGK To&aacute;n 10, Bộ C&aacute;nh diều, Tập 2)</strong></p> <p>Trong mặt phẳng tọa độ Oxy, cho tam gi&aacute;c MNP c&oacute; M(2; 1), N(&ndash; 1; 3), P(4; 2).</p> <p>a) T&igrave;m tọa độ của c&aacute;c vectơ&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>O</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>&#8594;</mo></mover><mo>,</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>P</mi></mrow><mo>&#8594;</mo></mover><mo>;</mo></math></p> <p>b) T&iacute;nh t&iacute;ch v&ocirc; hướng&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>P</mi></mrow><mo>&#8594;</mo></mover></math>;</p> <p>c) T&iacute;nh độ d&agrave;i c&aacute;c đoạn thẳng MN, MP;</p> <p>d) T&iacute;nh&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo>&#160;</mo><mover><mrow><mi>N</mi><mi>M</mi><mi>P</mi></mrow><mo>^</mo></mover><mo>;</mo></math></p> <p>e) T&igrave;m tọa độ trung điểm I của NP v&agrave; trọng t&acirc;m G của tam gi&aacute;c MNP.</p> <p>&nbsp;</p> <p><em><span style="text-decoration: underline;"><strong>Hướng dẫn giải</strong></span></em></p> <p>a) Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>O</mi><mi>M</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>(</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>;</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>)</mo><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>(</mo><mo>&#160;</mo><mo>&#8722;</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>;</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>)</mo><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>P</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>(</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>;</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>)</mo><mo>.</mo></math></p> <p>b) Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>P</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>4</mn></math></p> <p>c)Ta c&oacute;:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mi>N</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced open="|" close="|"><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>&#8594;</mo></mover></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><msup><mrow><mo>(</mo><mo>-</mo><mn>3</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><msup><mn>2</mn><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>13</mn></msqrt><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mi>M</mi><mi>P</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfenced open="|" close="|"><mover><mrow><mi>M</mi><mi>P</mi></mrow><mo>&#8594;</mo></mover></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><msup><mn>2</mn><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><msup><mn>1</mn><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt></math></p> <p>d) Ta c&oacute;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>N</mi><mi>P</mi></mrow><mo>^</mo></mover><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mover><mrow><mi>M</mi><mi>P</mi></mrow><mo>&#8594;</mo></mover></mrow><mrow><mover><mfenced open="|" close="|"><mrow><mi>M</mi><mi>N</mi></mrow></mfenced><mo>&#8594;</mo></mover><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><mover><mfenced open="|" close="|"><mrow><mi>M</mi><mi>P</mi></mrow></mfenced><mo>&#8594;</mo></mover></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>4</mn><mrow><msqrt><mn>13</mn></msqrt><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt></mrow></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>4</mn><msqrt><mn>65</mn></msqrt></mfrac></math></p> <p>e) Tọa độ trung điểm I của đoạn NP l&agrave;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mo>&#160;</mo><mo>(</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>;</mo><mo>&#160;</mo><mfrac><mn>5</mn><mn>2</mn></mfrac><mo>)</mo></math></p> <p>Tọa độ trọng t&acirc;m G của tam gi&aacute;c MNP l&agrave;:&nbsp;<span id="MathJax-Element-19-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mtable columnalign=&quot;left&quot; rowspacing=&quot;4pt&quot; columnspacing=&quot;1em&quot;&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mfrac&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mfrac&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo fence=&quot;true&quot; stretchy=&quot;true&quot; symmetric=&quot;true&quot;&gt;&lt;/mo&gt;&lt;/mrow&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x21D4;&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mtable columnalign=&quot;left&quot; rowspacing=&quot;4pt&quot; columnspacing=&quot;1em&quot;&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mfrac&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;msub&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo fence=&quot;true&quot; stretchy=&quot;true&quot; symmetric=&quot;true&quot;&gt;&lt;/mo&gt;&lt;/mrow&gt;&lt;mo stretchy=&quot;false&quot;&gt;&amp;#x21D4;&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow class=&quot;MJX-TeXAtom-ORD&quot;&gt;&lt;mfrac&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mfrac&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;"><span id="MJXc-Node-761" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-762" class="mjx-mrow"><span id="MJXc-Node-763" class="mjx-mrow"><span id="MJXc-Node-764" class="mjx-mo"></span></span></span></span></span><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><msub><mi>x</mi><mi>G</mi></msub><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><msub><mi>x</mi><mi>M</mi></msub><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msub><mi>x</mi><mi>N</mi></msub><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msub><mi>x</mi><mi>P</mi></msub></mrow><mn>3</mn></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>5</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><msub><mi>y</mi><mi>G</mi></msub><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><msub><mi>y</mi><mi>M</mi></msub><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msub><mi>y</mi><mi>N</mi></msub><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msub><mi>y</mi><mi>P</mi></msub></mrow><mn>3</mn></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math></p> <p>Vậy&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mo>(</mo><mfrac><mn>5</mn><mn>3</mn></mfrac><mo>;</mo><mo>&#160;</mo><mn>2</mn><mo>)</mo></math></p>
Xem lời giải bài tập khác cùng bài
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Bài 1 (Trang 103 SGK Toán 10, Bộ Cánh diều, Tập 2)</span></div> </div> </div> </div> </div>
Xem lời giải
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Bài 2 (Trang 103 SGK Toán 10, Bộ Cánh diều, Tập 2)</span></div> </div> </div> </div> </div>
Xem lời giải
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Bài 3 (Trang 103 SGK Toán 10, Bộ Cánh diều, Tập 2)</span></div> </div> </div> </div> </div>
Xem lời giải
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Bài 4 (Trang 103 SGK Toán 10, Bộ Cánh diều, Tập 2)</span></div> </div> </div> </div> </div>
Xem lời giải
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Bài 6 (Trang 104 SGK Toán 10, Bộ Cánh diều, Tập 2)</span></div> </div> </div> </div> </div>
Xem lời giải
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Bài 7 (Trang 104 SGK Toán 10, Bộ Cánh diều, Tập 2)</span></div> </div> </div> </div> </div>
Xem lời giải
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Bài 8 (Trang 104 SGK Toán 10, Bộ Cánh diều, Tập 2)</span></div> </div> </div> </div> </div>
Xem lời giải
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Bài 9 (Trang 104 SGK Toán 10, Bộ Cánh diều, Tập 2)</span></div> </div> </div> </div> </div>
Xem lời giải
<div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""> <div data-v-a7c68f28=""><span data-v-a7c68f28="">Hướng dẫn Giải Bài 10 (Trang 104 SGK Toán 10, Bộ Cánh diều, Tập 2)</span></div> </div> </div> </div> </div>
Xem lời giải