Bài 5: Hai dạng phương trình quy về phương trình bậc hai
Hướng dẫn giải Bài 4 (Trang 59 SGK Toán 10, Bộ Cánh diều, Tập 1)
<p><strong>B&agrave;i 4 (Trang 59, SGK To&aacute;n To&aacute;n 10, Bộ C&aacute;nh diều, Tập 1)</strong></p> <p><strong> </strong>Một người đứng ở điểm A tr&ecirc;n bờ s&ocirc;ng rộng 300 m, ch&egrave;o thuyền đến vị tr&iacute; D, sau đ&oacute; chạy bộ đến vị tr&iacute; B c&aacute;ch C một khoảng 800 m như H&igrave;nh 34. Vận tốc ch&egrave;o thuyền l&agrave; 6 km/h, vận tốc chạy bộ l&agrave; 10 km/h v&agrave; giả sử vận tốc d&ograve;ng nước kh&ocirc;ng đ&aacute;ng kể. T&iacute;nh khoảng c&aacute;ch từ vị tr&iacute; C đến D, biết tổng thời gian người đ&oacute; ch&egrave;o thuyền v&agrave; chạy bộ từ A đến B l&agrave; 7,2 ph&uacute;t.</p> <p><img class="wscnph" style="max-width: 100%; display: block; margin-left: auto; margin-right: auto;" src="https://static.colearn.vn:8413/v1.0/upload/library/28062022/bai-4-trand-59-toan-lop-10-tap-1-81cMLq.png" /></p> <h3 style="text-align: center;">&nbsp;</h3> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p>Đổi 300 m =0,3 km;&nbsp; &nbsp; &nbsp;800 m = 0,8 km;&nbsp; &nbsp; 7,2 ph&uacute;t =0,12(h)</p> <p>Gọi khoảng c&aacute;ch từ C đến D l&agrave; x (km) (0,8 &gt; x &gt; 0)</p> <p>Khi đ&oacute;, DB = 0,8 - x (km)</p> <p>Theo định l&yacute; Py-ta-go ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>D</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mi>A</mi><msup><mi>C</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>C</mi><msup><mi>D</mi><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>0</mn><mo>,</mo><msup><mn>3</mn><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>8</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>x</mi><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>(</mo><mi>k</mi><mi>m</mi><mo>)</mo></math></p> <p>Thời gian đi từ A đến D l&agrave;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msqrt><mn>0</mn><mo>,</mo><msup><mn>3</mn><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>8</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>x</mi><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mn>6</mn></mfrac><mo>&#160;</mo><mo>(</mo><mi>h</mi><mo>)</mo></math></p> <p>Thời gian đi từ&nbsp; D đến B l&agrave;:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>,</mo><mn>8</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>x</mi></mrow><mn>10</mn></mfrac><mo>&#160;</mo><mo>(</mo><mi>h</mi><mo>)</mo></math></p> <p>&nbsp;</p> <p>Tổng thời gian người đố ch&egrave;o thuyền v&agrave; chạy bộ từ A đến B l&agrave; 7,2 ph&uacute;t n&ecirc;n ta c&oacute; phương tr&igrave;nh:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msqrt><mn>0</mn><mo>,</mo><msup><mn>3</mn><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>8</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>x</mi><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mn>6</mn></mfrac><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>8</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>x</mi></mrow><mn>10</mn></mfrac><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mn>12</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><msqrt><mn>0</mn><mo>,</mo><mn>3</mn><msqrt><mn>2</mn></msqrt><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>8</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>x</mi><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mo>.</mo><mn>5</mn><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>3</mn><mo>.</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>8</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>x</mi><mo>)</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mn>12</mn><mo>.</mo><mn>30</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>5</mn><mo>.</mo><msqrt><mn>0</mn><mo>,</mo><msup><mn>3</mn><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>8</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>x</mi><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>5</mn><mo>.</mo><msqrt><mn>0</mn><mo>,</mo><msup><mn>3</mn><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>8</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>x</mi><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>,</mo><mn>2</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>25</mn><mo>.</mo><mo>[</mo><mn>0</mn><mo>,</mo><msup><mn>3</mn><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>8</mn><mo>&#160;</mo><mo>-</mo><mi>x</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>]</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mrow><mo>(</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mn>25</mn><mo>.</mo><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn><mo>,</mo><mn>6</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mn>73</mn><mo>)</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>9</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>7</mn><mo>,</mo><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>,</mo><mn>44</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>16</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>47</mn><mo>,</mo><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>16</mn><mo>,</mo><mn>81</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>59</mn><mo>&#160;</mo><mo>+</mo><mo>&#8201;</mo><mn>30</mn><msqrt><mn>2</mn></msqrt></mrow><mn>40</mn></mfrac><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mn>8</mn><mo>&#160;</mo><mo>(</mo><mi>k</mi><mi>t</mi><mi>m</mi><mo>)</mo></mtd></mtr><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>59</mn><mo>&#160;</mo><mo>-</mo><mo>&#8201;</mo><mn>30</mn><msqrt><mn>2</mn></msqrt></mrow><mn>40</mn></mfrac><mo>&#160;</mo><mo>&#8776;</mo><mo>&#160;</mo><mn>0</mn><mo>,</mo><mn>414</mn><mo>&#160;</mo><mo>(</mo><mi>t</mi><mi>m</mi><mo>)</mo></mtd></mtr></mtable></mfenced></math></p> <p>Ta b&igrave;nh phương được do <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#160;</mo><mo>&#8658;</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>&#160;</mo><mo>&#62;</mo><mo>&#160;</mo><mn>0</mn></math></p> <p>Vậy khoảng c&aacute;ch từ vị tr&iacute; C đến D l&agrave; 414m.</p>
Xem lời giải bài tập khác cùng bài