Bài 5: Hai dạng phương trình quy về phương trình bậc hai
Hướng dẫn giải Bài 1 (Trang 58 SGK Toán 10, Bộ Cánh diều, Tập 1)
<p><strong>B&agrave;i 1 (Trang 59, SGK To&aacute;n To&aacute;n 10, Bộ C&aacute;nh diều, Tập 1)</strong></p> <p>Giải c&aacute;c phương tr&igrave;nh sau:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn></msqrt><mspace linebreak="newline"/><mi>b</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>6</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>6</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><msup><mi>x</mi><mrow><mo>&#160;</mo><mn>2</mn></mrow></msup><mo>-</mo><mo>&#160;</mo><mn>6</mn></msqrt><mspace linebreak="newline"/><mi>c</mi><mo>)</mo><mo>&#160;</mo><msqrt><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>9</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mspace linebreak="newline"/><mi>d</mi><mo>)</mo><mo>&#160;</mo><msqrt><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>4</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>x</mi></math></p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn></msqrt></math> (1)</p> <p>B&igrave;nh phương hai vế của (1) ta được:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>5</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>4</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>5</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msqrt><mn>57</mn></msqrt></mrow><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mn>5</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><msqrt><mn>57</mn></msqrt></mrow><mn>4</mn></mfrac></mtd></mtr></mtable></math></p> <p>Thử lại ta thấy cả hai gi&aacute; trị tr&ecirc;n đều thỏa m&atilde;n (1).</p> <p>Vậy phương tr&igrave;nh đ&atilde; cho c&oacute; hai nghiệm l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>5</mn><mo>+</mo><msqrt><mn>57</mn></msqrt></mrow><mn>4</mn></mfrac><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mi>x</mi><mo>=</mo><mfrac><mrow><mn>5</mn><mo>-</mo><msqrt><mn>57</mn></msqrt></mrow><mn>4</mn></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>6</mn></msqrt><mo>=</mo><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn></msqrt></math> (2)</p> <p>B&igrave;nh phương hai vế của (2) ta được:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mn>6</mn><mi>x</mi><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mn>6</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mn>6</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><mo>&#160;</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mn>6</mn><mi>x</mi><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mn>6</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>6</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#160;</mo><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mn>6</mn><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#160;</mo><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>3</mn><mi>x</mi><mo>.</mo><mo>(</mo><mi>x</mi><mo>&#8211;</mo><mn>2</mn><mo>)</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr></mtable><mo>&#8660;</mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn></mtd></mtr></mtable></math></p> <p>Thử lại ta thấy hai gi&aacute; trị x = 0 v&agrave; x = 2 đều kh&ocirc;ng thỏa m&atilde;n (2).</p> <p>Vậy phương tr&igrave;nh đ&atilde; cho v&ocirc; nghiệm.</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>)</mo><mo>&#160;</mo><msqrt><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>9</mn></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn></math> (3)</p> <p>Trước hết ta giải bất phương tr&igrave;nh&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mi>x</mi><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math></p> <p>B&igrave;nh phương cả hai vế của (3) ta được:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>9</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mrow><mo>(</mo><mn>2</mn><mi>x</mi><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mn>3</mn><mo>)</mo></mrow><mn>2</mn></msup></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><mo>&#160;</mo><mi>x</mi><mo>+</mo><mn>9</mn><mo>=</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#8211;</mo><mn>12</mn><mi>x</mi><mo>+</mo><mn>9</mn><mo>&#160;</mo><mo>&#160;</mo><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#8211;</mo><mn>12</mn><mi>x</mi><mo>+</mo><mn>9</mn><mo>&#8211;</mo><mi>x</mi><mo>&#8211;</mo><mn>9</mn><mo>=</mo><mn>0</mn><mo>&#160;</mo><mo>&#160;</mo><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#8211;</mo><mn>13</mn><mi>x</mi><mo>=</mo><mn>0</mn><mo>&#160;</mo><mo>&#160;</mo><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mi>x</mi><mo>.</mo><mo>(</mo><mn>4</mn><mi>x</mi><mo>&#8211;</mo><mn>13</mn><mo>)</mo><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>4</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>13</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr></mtable><mspace linebreak="newline"/><mo>&#8660;</mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></mtd></mtr></mtable></math></p> <p>Trong hai gi&aacute; trị tr&ecirc;n c&oacute; gi&aacute; trị <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></math> thỏa m&atilde;n&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8805;</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math></p> <p>Vậy nghiệm của phương tr&igrave;nh đ&atilde; cho l&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>)</mo><mo>&#160;</mo><msqrt><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>4</mn><mi>x</mi><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mn>2</mn></msqrt><mo>=</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>-</mo><mo>&#160;</mo><mi>x</mi></math></p> <p>Trước hết ta giải bất phương tr&igrave;nh:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mi>x</mi><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8660;</mo><mo>&#160;</mo><mi>x</mi><mo>&#160;</mo><mo>&#8804;</mo><mo>&#160;</mo><mn>2</mn><mo>.</mo></math></p> <p>B&igrave;nh phương hai vế của (4) ta được:&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8211;</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>4</mn><mi>x</mi><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mrow><mo>(</mo><mn>2</mn><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mi>x</mi><mo>)</mo></mrow><mn>2</mn></msup></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8660;</mo><mo>&#8211;</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>4</mn><mi>x</mi><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>4</mn><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mn>4</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>&#160;</mo><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>&#160;</mo><mo>&#8211;</mo><mo>&#160;</mo><mn>8</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>6</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#160;</mo><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><msup><mi>x</mi><mn>2</mn></msup><mo>&#8211;</mo><mo>&#160;</mo><mn>4</mn><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#8660;</mo><mo>[</mo><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>3</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn></mtd></mtr></mtable></math></p> <p>Trong hai gi&aacute; trị tr&ecirc;n c&oacute; gi&aacute; trị x = 1 thỏa m&atilde;n x &le; 2.</p> <p>Vậy nghiệm của phương tr&igrave;nh đ&atilde; cho l&agrave; x = 1.</p>
Xem lời giải bài tập khác cùng bài