Bài 3: Liên hệ giữa phép nhân và phép khai phương
Hướng dẫn giải Bài 25 (Trang 16 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 25 (Trang 16 SGK To&aacute;n 9, Tập 1):</strong></p> <p>T&igrave;m x biết:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>16</mn><mi>x</mi></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>8</mn><mo>;</mo><mspace linebreak="newline"/><mspace linebreak="newline"/><mi>b</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>4</mn><mi>x</mi></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt><mo>;</mo><mspace linebreak="newline"/><mspace linebreak="newline"/><mi>c</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>9</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>21</mn><mo>;</mo><mspace linebreak="newline"/><mspace linebreak="newline"/><mi>d</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>4</mn><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup></msqrt><mo>-</mo><mn>6</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>.</mo></math></p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>16</mn><mi mathvariant="normal">x</mi></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>8</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>8</mn><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mi>v&#224;</mi><mo>&#160;</mo><mn>16</mn><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mn>8</mn><mn>2</mn></msup><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>64</mn><mo>:</mo><mn>16</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>4</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>4</mn><mi>x</mi></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msqrt><mn>5</mn></msqrt><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mn>4</mn><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>5</mn><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mn>5</mn><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>5</mn><mn>4</mn></mfrac></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>9</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced></msqrt><mo>=</mo><mn>21</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mn>21</mn><mo>&#160;</mo><mo>&#8805;</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mi>v</mi><mi>&#224;</mi><mo>&#160;</mo><mn>9</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mn>21</mn><mn>2</mn></msup><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mi>x</mi><mo>-</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><msup><mn>21</mn><mn>2</mn></msup><mo>&#160;</mo><mo>:</mo><mo>&#160;</mo><mn>9</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mi>x</mi><mo>-</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>49</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>50</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>)</mo><mo>&#160;</mo><msqrt><mn>4</mn><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup></msqrt><mo>-</mo><mn>6</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><msqrt><mn>4</mn><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup></msqrt><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>6</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mn>2</mn><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>6</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mo>&#160;</mo><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>3</mn><mspace linebreak="newline"/><mspace linebreak="newline"/><mo>&#8660;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>1</mn><mo>-</mo><mi>x</mi><mo>=</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>-</mo><mi>x</mi><mo>=</mo><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mo>&#8660;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>=</mo><mn>4</mn></mtd></mtr></mtable></mfenced></math></p>
Xem lời giải bài tập khác cùng bài