Trên đường tròn (O) đường kính AB, lấy điểm M (khác A và B). Vẽ tiếp tuyến của (O) tại A. Đường thẳng BM cắt tiếp tuyến đó tại C. Chứng minh rằng ta luôn có:
MA2 = MB . MC
Giải:
là góc nội tiếp chắn nửa đường tròn.
AC là tiếp tuyến của đường tròn tại A
⇒ AC ⊥ AO
⇒ ΔABC vuông tại A có đường cao AM
⇒ AM2 = MB.MC (Hệ thức về cạnh và đường cao trong tam giác vuông).