Hướng dẫn giải Bài 2 (Trang 45 SGK Toán 9, Tập 1)
<p><strong>Bài 2 (Trang 45 SGK Toán 9, Tập 1):</strong></p>
<p>Cho hàm số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn></math></p>
<p>a) Tính các giá trị tương ứng của y theo các giá trị của x rồi điền vào bảng sau:</p>
<table style="border-collapse: collapse; width: 100%; height: 63.3906px;" border="1">
<tbody>
<tr style="height: 22.3906px;">
<td style="width: 12.0968%; height: 22.3906px; text-align: center;">x</td>
<td style="width: 6.81004%; height: 22.3906px; text-align: center;">-2,5</td>
<td style="width: 7.16846%; height: 22.3906px; text-align: center;">-2</td>
<td style="width: 8.96057%; height: 22.3906px; text-align: center;">-1,5</td>
<td style="width: 8.06452%; height: 22.3906px; text-align: center;">-1</td>
<td style="width: 8.69176%; height: 22.3906px; text-align: center;">-0,5</td>
<td style="width: 7.97491%; height: 22.3906px; text-align: center;">0</td>
<td style="width: 9.94624%; height: 22.3906px; text-align: center;">0,5</td>
<td style="width: 8.06452%; height: 22.3906px; text-align: center;">1</td>
<td style="width: 8.06452%; height: 22.3906px; text-align: center;">1,5</td>
<td style="width: 7.25806%; height: 22.3906px; text-align: center;">2</td>
<td style="width: 6.89964%; height: 22.3906px; text-align: center;">2,5</td>
</tr>
<tr style="height: 41px;">
<td style="width: 12.0968%; height: 41px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn></math></td>
<td style="width: 6.81004%; height: 41px; text-align: center;"> </td>
<td style="width: 7.16846%; height: 41px; text-align: center;"> </td>
<td style="width: 8.96057%; height: 41px; text-align: center;"> </td>
<td style="width: 8.06452%; height: 41px; text-align: center;"> </td>
<td style="width: 8.69176%; height: 41px; text-align: center;"> </td>
<td style="width: 7.97491%; height: 41px; text-align: center;"> </td>
<td style="width: 9.94624%; height: 41px; text-align: center;"> </td>
<td style="width: 8.06452%; height: 41px; text-align: center;"> </td>
<td style="width: 8.06452%; height: 41px; text-align: center;"> </td>
<td style="width: 7.25806%; height: 41px; text-align: center;"> </td>
<td style="width: 6.89964%; height: 41px; text-align: center;"> </td>
</tr>
</tbody>
</table>
<p>b) Hàm số đã cho là hàm số đồng biến hay nghịch biến? Vì sao?</p>
<p> </p>
<p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p>
<p><strong>a)</strong></p>
<p>Ta có : </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">x</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mn>5</mn><mo> </mo><mo>⇒</mo><mi mathvariant="normal">y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mfenced><mrow><mo>-</mo><mn>2</mn><mo>,</mo><mn>5</mn></mrow></mfenced><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo> </mo><mo>=</mo><mo> </mo><mn>4</mn><mo>,</mo><mn>215</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mn>2</mn><mo> </mo><mo>⇒</mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>3</mn><mo> </mo><mo>=</mo><mn>1</mn><mo> </mo><mo>+</mo><mn>3</mn><mo> </mo><mo>=</mo><mo> </mo><mn>4</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo> </mo><mo>⇒</mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mfenced><mrow><mo>-</mo><mn>1</mn><mo>,</mo><mn>5</mn></mrow></mfenced><mo>+</mo><mn>3</mn><mo> </mo><mo>=</mo><mn>0</mn><mo>,</mo><mn>75</mn><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo> </mo><mo>=</mo><mn>3</mn><mo>,</mo><mn>75</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mn>1</mn><mo> </mo><mo>⇒</mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>3</mn><mo> </mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo> </mo><mo>=</mo><mn>3</mn><mo>,</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mn>0</mn><mo>,</mo><mn>5</mn><mo> </mo><mo>⇒</mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mfenced><mrow><mo>-</mo><mn>0</mn><mo>,</mo><mn>5</mn></mrow></mfenced><mo>+</mo><mn>3</mn><mo> </mo><mo>=</mo><mn>0</mn><mo>,</mo><mn>25</mn><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo> </mo><mo>=</mo><mn>3</mn><mo>,</mo><mn>25</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo> </mo><mo>⇒</mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>0</mn><mo>+</mo><mn>3</mn><mo> </mo><mo>=</mo><mn>3</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn><mo> </mo><mo>⇒</mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>1</mn><mo>+</mo><mn>3</mn><mo> </mo><mo>=</mo><mn>2</mn><mo>,</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn><mo>,</mo><mn>5</mn><mo> </mo><mo>⇒</mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo>+</mo><mn>3</mn><mo> </mo><mo>=</mo><mo>-</mo><mn>0</mn><mo>,</mo><mn>75</mn><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo>=</mo><mo> </mo><mn>2</mn><mo>,</mo><mn>25</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>2</mn><mo> </mo><mo>⇒</mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>2</mn><mo>+</mo><mn>3</mn><mo> </mo><mo>=</mo><mo>-</mo><mn>1</mn><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo> </mo><mo>=</mo><mo> </mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mo>=</mo><mo> </mo><mn>2</mn><mo>,</mo><mn>5</mn><mo> </mo><mo>⇒</mo><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>2</mn><mo>,</mo><mn>5</mn><mo>+</mo><mn>3</mn><mo> </mo><mo>=</mo><mo>-</mo><mn>1</mn><mo>,</mo><mn>25</mn><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn><mo>,</mo><mn>75</mn></math></p>
<p>Ta được bảng sau:</p>
<table style="border-collapse: collapse; width: 100%; height: 63.3906px;" border="1">
<tbody>
<tr style="height: 22.3906px;">
<td style="width: 12.0968%; height: 22.3906px; text-align: center;">x</td>
<td style="width: 6.81004%; height: 22.3906px; text-align: center;">-2,5</td>
<td style="width: 7.16846%; height: 22.3906px; text-align: center;">-2</td>
<td style="width: 8.96057%; height: 22.3906px; text-align: center;">-1,5</td>
<td style="width: 8.06452%; height: 22.3906px; text-align: center;">-1</td>
<td style="width: 8.69176%; height: 22.3906px; text-align: center;">-0,5</td>
<td style="width: 7.97491%; height: 22.3906px; text-align: center;">0</td>
<td style="width: 9.94624%; height: 22.3906px; text-align: center;">0,5</td>
<td style="width: 8.06452%; height: 22.3906px; text-align: center;">1</td>
<td style="width: 8.06452%; height: 22.3906px; text-align: center;">1,5</td>
<td style="width: 7.25806%; height: 22.3906px; text-align: center;">2</td>
<td style="width: 6.89964%; height: 22.3906px; text-align: center;">2,5</td>
</tr>
<tr style="height: 41px;">
<td style="width: 12.0968%; height: 41px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo> </mo><mo>=</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo> </mo><mo>+</mo><mo> </mo><mn>3</mn></math></td>
<td style="width: 6.81004%; height: 41px; text-align: center;">4,25</td>
<td style="width: 7.16846%; height: 41px; text-align: center;">4</td>
<td style="width: 8.96057%; height: 41px; text-align: center;">3,75</td>
<td style="width: 8.06452%; height: 41px; text-align: center;">3,5</td>
<td style="width: 8.69176%; height: 41px; text-align: center;">3,25</td>
<td style="width: 7.97491%; height: 41px; text-align: center;">3</td>
<td style="width: 9.94624%; height: 41px; text-align: center;">2,75</td>
<td style="width: 8.06452%; height: 41px; text-align: center;">2,5</td>
<td style="width: 8.06452%; height: 41px; text-align: center;">2,25</td>
<td style="width: 7.25806%; height: 41px; text-align: center;">2</td>
<td style="width: 6.89964%; height: 41px; text-align: center;">1,75</td>
</tr>
</tbody>
</table>
<p><strong>b)</strong> Hàm số đã cho là hàm số nghịch biến trên R vì khi giá trị của biến <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> tăng lên mà giá trị tương ứng f(x) lại giảm đi.</p>
Hướng dẫn Giải Bài 2 (trang 45, SGK Toán 9, Tập 1)
GV:
GV colearn