Bài 1: Nhắc lại và bổ sung các khái niệm về hàm số
Hướng dẫn giải Bài 2 (Trang 45 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 2 (Trang 45 SGK To&aacute;n 9, Tập 1):</strong></p> <p>Cho h&agrave;m số&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn></math></p> <p>a) T&iacute;nh c&aacute;c gi&aacute; trị tương ứng của y theo c&aacute;c gi&aacute; trị của x rồi điền v&agrave;o bảng sau:</p> <table style="border-collapse: collapse; width: 100%; height: 63.3906px;" border="1"> <tbody> <tr style="height: 22.3906px;"> <td style="width: 12.0968%; height: 22.3906px; text-align: center;">x</td> <td style="width: 6.81004%; height: 22.3906px; text-align: center;">-2,5</td> <td style="width: 7.16846%; height: 22.3906px; text-align: center;">-2</td> <td style="width: 8.96057%; height: 22.3906px; text-align: center;">-1,5</td> <td style="width: 8.06452%; height: 22.3906px; text-align: center;">-1</td> <td style="width: 8.69176%; height: 22.3906px; text-align: center;">-0,5</td> <td style="width: 7.97491%; height: 22.3906px; text-align: center;">0</td> <td style="width: 9.94624%; height: 22.3906px; text-align: center;">0,5</td> <td style="width: 8.06452%; height: 22.3906px; text-align: center;">1</td> <td style="width: 8.06452%; height: 22.3906px; text-align: center;">1,5</td> <td style="width: 7.25806%; height: 22.3906px; text-align: center;">2</td> <td style="width: 6.89964%; height: 22.3906px; text-align: center;">2,5</td> </tr> <tr style="height: 41px;"> <td style="width: 12.0968%; height: 41px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn></math></td> <td style="width: 6.81004%; height: 41px; text-align: center;">&nbsp;</td> <td style="width: 7.16846%; height: 41px; text-align: center;">&nbsp;</td> <td style="width: 8.96057%; height: 41px; text-align: center;">&nbsp;</td> <td style="width: 8.06452%; height: 41px; text-align: center;">&nbsp;</td> <td style="width: 8.69176%; height: 41px; text-align: center;">&nbsp;</td> <td style="width: 7.97491%; height: 41px; text-align: center;">&nbsp;</td> <td style="width: 9.94624%; height: 41px; text-align: center;">&nbsp;</td> <td style="width: 8.06452%; height: 41px; text-align: center;">&nbsp;</td> <td style="width: 8.06452%; height: 41px; text-align: center;">&nbsp;</td> <td style="width: 7.25806%; height: 41px; text-align: center;">&nbsp;</td> <td style="width: 6.89964%; height: 41px; text-align: center;">&nbsp;</td> </tr> </tbody> </table> <p>b) H&agrave;m số đ&atilde; cho l&agrave; h&agrave;m số đồng biến hay nghịch biến? V&igrave; sao?</p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span></strong></p> <p><strong>a)</strong></p> <p>Ta c&oacute; :&nbsp;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>2</mn><mo>,</mo><mn>5</mn><mo>&#160;</mo><mo>&#8658;</mo><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mfenced><mrow><mo>-</mo><mn>2</mn><mo>,</mo><mn>5</mn></mrow></mfenced><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>4</mn><mo>,</mo><mn>215</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>2</mn><mo>&#160;</mo><mo>&#8658;</mo><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mn>1</mn><mo>&#160;</mo><mo>+</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>4</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo>&#160;</mo><mo>&#8658;</mo><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mfenced><mrow><mo>-</mo><mn>1</mn><mo>,</mo><mn>5</mn></mrow></mfenced><mo>+</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mn>0</mn><mo>,</mo><mn>75</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mn>3</mn><mo>,</mo><mn>75</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>&#160;</mo><mo>&#8658;</mo><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mn>3</mn><mo>,</mo><mn>5</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mn>0</mn><mo>,</mo><mn>5</mn><mo>&#160;</mo><mo>&#8658;</mo><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mfenced><mrow><mo>-</mo><mn>0</mn><mo>,</mo><mn>5</mn></mrow></mfenced><mo>+</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mn>0</mn><mo>,</mo><mn>25</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mn>3</mn><mo>,</mo><mn>25</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>&#8658;</mo><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>0</mn><mo>+</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mn>3</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>&#8658;</mo><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>1</mn><mo>+</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mn>2</mn><mo>,</mo><mn>5</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo>&#160;</mo><mo>&#8658;</mo><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo>+</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>-</mo><mn>0</mn><mo>,</mo><mn>75</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>=</mo><mo>&#160;</mo><mn>2</mn><mo>,</mo><mn>25</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>&#8658;</mo><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>2</mn><mo>+</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>-</mo><mn>1</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn></math></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mo>,</mo><mn>5</mn><mo>&#160;</mo><mo>&#8658;</mo><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>.</mo><mn>2</mn><mo>,</mo><mn>5</mn><mo>+</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>-</mo><mn>1</mn><mo>,</mo><mn>25</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>1</mn><mo>,</mo><mn>75</mn></math></p> <p>Ta được bảng sau:</p> <table style="border-collapse: collapse; width: 100%; height: 63.3906px;" border="1"> <tbody> <tr style="height: 22.3906px;"> <td style="width: 12.0968%; height: 22.3906px; text-align: center;">x</td> <td style="width: 6.81004%; height: 22.3906px; text-align: center;">-2,5</td> <td style="width: 7.16846%; height: 22.3906px; text-align: center;">-2</td> <td style="width: 8.96057%; height: 22.3906px; text-align: center;">-1,5</td> <td style="width: 8.06452%; height: 22.3906px; text-align: center;">-1</td> <td style="width: 8.69176%; height: 22.3906px; text-align: center;">-0,5</td> <td style="width: 7.97491%; height: 22.3906px; text-align: center;">0</td> <td style="width: 9.94624%; height: 22.3906px; text-align: center;">0,5</td> <td style="width: 8.06452%; height: 22.3906px; text-align: center;">1</td> <td style="width: 8.06452%; height: 22.3906px; text-align: center;">1,5</td> <td style="width: 7.25806%; height: 22.3906px; text-align: center;">2</td> <td style="width: 6.89964%; height: 22.3906px; text-align: center;">2,5</td> </tr> <tr style="height: 41px;"> <td style="width: 12.0968%; height: 41px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn></math></td> <td style="width: 6.81004%; height: 41px; text-align: center;">4,25</td> <td style="width: 7.16846%; height: 41px; text-align: center;">4</td> <td style="width: 8.96057%; height: 41px; text-align: center;">3,75</td> <td style="width: 8.06452%; height: 41px; text-align: center;">3,5</td> <td style="width: 8.69176%; height: 41px; text-align: center;">3,25</td> <td style="width: 7.97491%; height: 41px; text-align: center;">3</td> <td style="width: 9.94624%; height: 41px; text-align: center;">2,75</td> <td style="width: 8.06452%; height: 41px; text-align: center;">2,5</td> <td style="width: 8.06452%; height: 41px; text-align: center;">2,25</td> <td style="width: 7.25806%; height: 41px; text-align: center;">2</td> <td style="width: 6.89964%; height: 41px; text-align: center;">1,75</td> </tr> </tbody> </table> <p><strong>b)</strong> H&agrave;m số đ&atilde; cho l&agrave; h&agrave;m số nghịch biến tr&ecirc;n R&nbsp;v&igrave; khi gi&aacute; trị của biến&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> tăng l&ecirc;n m&agrave; gi&aacute; trị tương ứng f(x)&nbsp;lại giảm đi.</p>
Hướng dẫn Giải Bài 2 (trang 45, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 2 (trang 45, SGK Toán 9, Tập 1)
GV: GV colearn