Bài 1: Nhắc lại và bổ sung các khái niệm về hàm số
Hướng dẫn giải Bài 1 (Trang 44 SGK Toán 9, Tập 1)
<p><strong>B&agrave;i 1 (Trang 44 SGK To&aacute;n 9, Tập 1):</strong></p> <p>a) Cho h&agrave;m số <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi mathvariant="normal">f</mi><mrow><mo>(</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mo>&#160;</mo><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi mathvariant="normal">x</mi></math>.</p> <p>T&iacute;nh :&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mi mathvariant="normal">f</mi><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mi mathvariant="normal">f</mi><mfenced><mn>0</mn></mfenced><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mi mathvariant="normal">f</mi><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mo>;</mo><mo>&#160;</mo><mi mathvariant="normal">f</mi><mfenced><mn>1</mn></mfenced><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mi mathvariant="normal">f</mi><mfenced><mn>2</mn></mfenced><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mi mathvariant="normal">f</mi><mfenced><mn>3</mn></mfenced><mo>.</mo></math></p> <p>b) Cho h&agrave;m số&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi mathvariant="normal">g</mi><mrow><mo>(</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mo>&#160;</mo><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi mathvariant="normal">x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>.</mo></math></p> <p>T&iacute;nh : <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">g</mi><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mi mathvariant="normal">g</mi><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mi mathvariant="normal">g</mi><mfenced><mn>0</mn></mfenced><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mi mathvariant="normal">g</mi><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mo>;</mo><mo>&#160;</mo><mi mathvariant="normal">g</mi><mfenced><mn>1</mn></mfenced><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mi mathvariant="normal">g</mi><mfenced><mn>2</mn></mfenced><mo>;</mo><mo>&#160;</mo><mo>&#160;</mo><mi mathvariant="normal">g</mi><mfenced><mn>3</mn></mfenced><mo>;</mo></math></p> <p>c) C&oacute; nhận x&eacute;t g&igrave; về gi&aacute; trị của hai h&agrave;m số đ&atilde; cho ở tr&ecirc;n khi biến x&nbsp;lấy c&ugrave;ng một gi&aacute; trị?</p> <p>&nbsp;</p> <p><strong><span style="text-decoration: underline;"><em>Hướng dẫn giải:</em></span>&nbsp;</strong></p> <p><strong>a)</strong></p> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">f</mi><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mo>(</mo><mo>-</mo><mn>2</mn><mo>)</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mo>-</mo><mn>4</mn></mrow><mn>3</mn></mfrac><mo>;</mo><mspace linebreak="newline"/><mi mathvariant="normal">f</mi><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mrow><mo>-</mo><mn>2</mn></mrow><mn>3</mn></mfrac><mo>;</mo><mspace linebreak="newline"/><mi mathvariant="normal">f</mi><mfenced><mn>0</mn></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>;</mo><mspace linebreak="newline"/><mi mathvariant="normal">f</mi><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>;</mo><mspace linebreak="newline"/><mi mathvariant="normal">f</mi><mfenced><mn>1</mn></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>;</mo><mspace linebreak="newline"/><mi mathvariant="normal">f</mi><mfenced><mn>2</mn></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mo>;</mo><mspace linebreak="newline"/><mi mathvariant="normal">f</mi><mfenced><mn>3</mn></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>2</mn><mo>.</mo></math></strong></p> <p><strong>b) </strong></p> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">g</mi><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mo>(</mo><mo>-</mo><mn>2</mn><mo>)</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mfrac><mn>5</mn><mn>3</mn></mfrac><mo>;</mo><mspace linebreak="newline"/><mi mathvariant="normal">g</mi><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mfrac><mn>7</mn><mn>3</mn></mfrac><mo>;</mo><mspace linebreak="newline"/><mi mathvariant="normal">g</mi><mfenced><mn>0</mn></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mn>0</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mn>0</mn><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mn>3</mn><mo>;</mo><mspace linebreak="newline"/><mi mathvariant="normal">g</mi><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mfrac><mn>10</mn><mn>3</mn></mfrac><mo>;</mo><mspace linebreak="newline"/><mi mathvariant="normal">g</mi><mfenced><mn>1</mn></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mn>1</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mfrac><mn>11</mn><mn>3</mn></mfrac><mo>;</mo><mspace linebreak="newline"/><mi mathvariant="normal">g</mi><mfenced><mn>2</mn></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mn>2</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mfrac><mn>13</mn><mn>3</mn></mfrac><mspace linebreak="newline"/><mi mathvariant="normal">g</mi><mfenced><mn>3</mn></mfenced><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>.</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mfrac><mn>6</mn><mn>3</mn></mfrac><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn><mo>&#160;</mo><mo>=</mo><mfrac><mn>15</mn><mn>3</mn></mfrac><mo>.</mo></math></strong></p> <p><strong>c)</strong></p> <p>Từ kết quả c&acirc;u a v&agrave; b ta được bảng sau:</p> <table style="border-collapse: collapse; width: 100%;" border="1"> <tbody> <tr> <td style="width: 19.2843%; text-align: center;">x</td> <td style="width: 11.332%; text-align: center;">-2</td> <td style="width: 8.94632%; text-align: center;">-1</td> <td style="width: 10.9344%; text-align: center;">0</td> <td style="width: 12.1249%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math></td> <td style="width: 11.3344%; text-align: center;">1</td> <td style="width: 12.5249%; text-align: center;">2</td> <td style="width: 13.5189%; text-align: center;">3</td> </tr> <tr> <td style="width: 19.2843%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>f</mi><mrow><mo>(</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mo>&#160;</mo><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>x</mi></math></td> <td style="width: 11.332%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>4</mn><mn>3</mn></mfrac></math></td> <td style="width: 8.94632%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math></td> <td style="width: 10.9344%; text-align: center;">0</td> <td style="width: 12.1249%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac></math></td> <td style="width: 11.3344%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>3</mn></mfrac></math></td> <td style="width: 12.5249%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>3</mn></mfrac></math></td> <td style="width: 13.5189%; text-align: center;">2</td> </tr> <tr> <td style="width: 19.2843%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>g</mi><mrow><mo>(</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mo>&#160;</mo><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn></math></td> <td style="width: 11.332%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mo>+</mo><mn>3</mn></math></td> <td style="width: 8.94632%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>+</mo><mn>3</mn></math></td> <td style="width: 10.9344%; text-align: center;">0 + 3</td> <td style="width: 12.1249%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mn>3</mn></math></td> <td style="width: 11.3344%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>+</mo><mn>3</mn></math></td> <td style="width: 12.5249%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>3</mn></mfrac><mo>+</mo><mn>3</mn></math></td> <td style="width: 13.5189%; text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mn>3</mn></mfrac><mo>+</mo><mn>3</mn></math></td> </tr> </tbody> </table> <p>Lưu &yacute;:</p> <ul> <li>Hai h&agrave;m số&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>f</mi><mrow><mo>(</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mo>&#160;</mo><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>x</mi></math> v&agrave;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>g</mi><mrow><mo>(</mo><mi mathvariant="normal">x</mi><mo>)</mo></mrow><mo>&#160;</mo><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>x</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mn>3</mn></math> l&agrave; hai h&agrave;m số đồng biến v&igrave; khi x tăng th&igrave; y cũng nhận được c&aacute;c gi&aacute; trị tương ứng tăng l&ecirc;n.</li> <li>C&ugrave;ng một gi&aacute; trị của biến x, gi&aacute; trị của h&agrave;m số y = g(x) lu&ocirc;n lu&ocirc;n lớn hơn gi&aacute; trị tương ứng của h&agrave;m số y = f(x) l&agrave; 3 đơn vị.</li> </ul>
Hướng dẫn Giải Bài 1 (trang 44, SGK Toán 9, Tập 1)
GV: GV colearn
Xem lời giải bài tập khác cùng bài
Video hướng dẫn giải bài tập
Hướng dẫn Giải Bài 1 (trang 44, SGK Toán 9, Tập 1)
GV: GV colearn