Bài 11: Hình Thoi
Hướng dẫn giải Bài 76 (Trang 106 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Chứng minh rằng c&aacute;c trung điểm của bốn cạnh của một h&igrave;nh thoi l&agrave; c&aacute;c đỉnh của một h&igrave;nh chữ nhật.</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><strong class="content_detail"><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/06072022/b76-trand-106-sdk-toan-8-t-1-c2-SSMQB3.jpg" /></strong></p> <p><span class="content_detail">X&eacute;t h&igrave;nh thoi&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-6" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>, gọi&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-7" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-8" class="mjx-mrow"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-10" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-11" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-12" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-13" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">G</span></span><span id="MJXc-Node-14" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-15" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span>&nbsp;lần lượt l&agrave; trung điểm của&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-16" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-17" class="mjx-mrow"><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-19" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-20" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-21" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-23" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-24" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-25" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-26" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-27" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-28" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>.<br />Ta c&oacute;:&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-29" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-30" class="mjx-mrow"><span id="MJXc-Node-31" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-32" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-33" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-34" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-35" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-36" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-37" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-38" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-39" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-40" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">F</span></span><span id="MJXc-Node-41" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span></span>&nbsp;(giả thiết )<br /></span></p> <p><span class="content_detail">n&ecirc;n&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-42" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-43" class="mjx-mrow"><span id="MJXc-Node-44" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">E</span></span><span id="MJXc-Node-45" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">F</span></span></span></span></span>&nbsp;l&agrave; đường trung b&igrave;nh của&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mo&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>A</mi><mi>B</mi><mi>C</mi></math></span></span> (dấu hiệu nhận biết đường trung b&igrave;nh của tam gi&aacute;c)<br /></span></p> <p><span class="content_detail"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>E</mi><mi>F</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>C</mi><mo>,</mo><mi>E</mi><mi>F</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi></mrow><mn>2</mn></mfrac></mstyle></math> (t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c)<br />Do HD=HA, GD=GC (giả thiết )<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>H</mi><mo>&#8290;</mo><mi>G</mi></mstyle></math> l&agrave; đường trung b&igrave;nh của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> (dấu hiệu nhận biết đường trung b&igrave;nh của tam gi&aacute;c )<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>H</mi><mi>G</mi><mo>/</mo><mo>/</mo><mi>A</mi><mi>C</mi><mo>,</mo><mi>H</mi><mi>G</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi></mrow><mn>2</mn></mfrac></mstyle></math> (t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>E</mi><mi>F</mi><mo>/</mo><mo>/</mo><mi>H</mi><mi>G</mi></mstyle></math> (c&ugrave;ng // AC) v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>F</mi><mo>=</mo><mi>H</mi><mo>&#8290;</mo><mi>G</mi><mspace/><mrow><mo>(</mo><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>C</mi></mrow><mn>2</mn></mfrac><mo>)</mo></mrow></math><br />Suy ra EFGH l&agrave; h&igrave;nh b&igrave;nh h&agrave;nh (dấu hiệu nhận biết h&igrave;nh b&igrave;nh h&agrave;nh)<br />Ta c&oacute;: EB=EA, AH=HD (giả thiết)<br />n&ecirc;n EH l&agrave; đường trung b&igrave;nh của <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> (dấu hiệu nhận biết đường trung b&igrave;nh của tam gi&aacute;c )<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>E</mi><mi>H</mi><mo>/</mo><mo>/</mo><mi>B</mi><mi>D</mi></mstyle></math> (t&iacute;nh chất đường trung b&igrave;nh của tam gi&aacute;c)<br />Ta c&oacute; EF//AC (chứng minh tr&ecirc;n) v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>D</mi><mo>&#10178;</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi></math> (t&iacute;nh chất h&igrave;nh thoi ABCD)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi><mo>&#10178;</mo><mi>E</mi><mo>&#8290;</mo><mi>F</mi></mstyle></math><br />M&agrave; EH//BD (chứng minh tr&ecirc;n)<br /></span></p> <p><span class="content_detail"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8658;</mo><mi>E</mi><mo>&#8290;</mo><mi>F</mi><mo>&#10178;</mo><mi>E</mi><mo>&#8290;</mo><mpadded><mi>H</mi></mpadded><mo>&#8290;</mo><mspace linebreak="newline"/><mo>&#8658;</mo><mover accent="true"><mrow><mi>F</mi><mo>&#8290;</mo><mi>E</mi><mo>&#8290;</mo><mi>H</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mn>0</mn></msup><mo>&#8290;</mo></math><br />H&igrave;nh b&igrave;nh h&agrave;nh EFGH c&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>E</mi><mo>^</mo></mover><mo>=</mo><msup><mn>90</mn><mo>&#8728;</mo></msup></mstyle></math> n&ecirc;n l&agrave; h&igrave;nh chữ nhật (dấu hiệu nhận biết h&igrave;nh chữ nhật)<br /></span></p>
Xem lời giải bài tập khác cùng bài