Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 8 / Toán học /
Bài 6: Đối Xứng Trục
Bài 6: Đối Xứng Trục
Hướng dẫn giải Bài 41 (Trang 88 SGK Toán Hình học 8, Tập 1)
<p><strong>LG a.</strong></p> <p>Nếu ba điểm thẳng hàng thì ba điểm đối xứng với chúng qua một trục cũng thẳng hàng.</p> <p><strong>Phương pháp giải:</strong></p> <p>- Hai điểm gọi là đối xứng với nhau qua đường thẳng <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math></span></span> nếu <span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-4" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-5" class="mjx-mrow"><span id="MJXc-Node-6" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> là đường trung trực của đoạn thẳng nối hai điểm đó.</p> <p>- Hai hình gọi là đối xứng với nhau qua đường thẳng <span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math></span></span> nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua đường thẳng <span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-10" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-11" class="mjx-mrow"><span id="MJXc-Node-12" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> và ngược lại.</p> <p>- Đường thẳng <span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-13" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-14" class="mjx-mrow"><span id="MJXc-Node-15" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> gọi là trục đối xứng của hình <span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>"><span id="MJXc-Node-16" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-17" class="mjx-mrow"><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span> nếu điểm đối xứng với mỗi điểm thuộc hình <span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>"><span id="MJXc-Node-19" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-20" class="mjx-mrow"><span id="MJXc-Node-21" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span> qua đường thẳng <span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math></span></span> cũng thuộc hình <span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>.</mo></math>"><span id="MJXc-Node-25" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-26" class="mjx-mrow"><span id="MJXc-Node-27" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span><span id="MJXc-Node-28" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span></p> <p><strong>Lời giải chi tiết:</strong></p> <p>Đúng. </p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/03072022/290442f6-3c45-46da-aabe-37566385dbfb.PNG" /></p> <p><strong>LG b.</strong></p> <p>Hai tam giác đối xứng với nhau qua một trục thì có chu vi bằng nhau.</p> <p><strong>Phương pháp giải:</strong></p> <p>- Hai điểm gọi là đối xứng với nhau qua đường thẳng <span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-29" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-30" class="mjx-mrow"><span id="MJXc-Node-31" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> nếu <span id="MathJax-Element-11-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math></span></span> là đường trung trực của đoạn thẳng nối hai điểm đó.</p> <p>- Hai hình gọi là đối xứng với nhau qua đường thẳng <span id="MathJax-Element-12-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-35" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-36" class="mjx-mrow"><span id="MJXc-Node-37" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua đường thẳng <span id="MathJax-Element-13-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-38" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-39" class="mjx-mrow"><span id="MJXc-Node-40" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> và ngược lại.</p> <p>- Đường thẳng <span id="MathJax-Element-14-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-41" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-42" class="mjx-mrow"><span id="MJXc-Node-43" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> gọi là trục đối xứng của hình <span id="MathJax-Element-15-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>"><span id="MJXc-Node-44" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-45" class="mjx-mrow"><span id="MJXc-Node-46" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span> nếu điểm đối xứng với mỗi điểm thuộc hình <span id="MathJax-Element-16-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>"><span id="MJXc-Node-47" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-48" class="mjx-mrow"><span id="MJXc-Node-49" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span> qua đường thẳng <span id="MathJax-Element-17-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math></span></span> cũng thuộc hình <span id="MathJax-Element-18-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>.</mo></math>"><span id="MJXc-Node-53" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-54" class="mjx-mrow"><span id="MJXc-Node-55" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span><span id="MJXc-Node-56" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span></p> <p><strong>Lời giải chi tiết:</strong></p> <p>Đúng vì hai tam giác đối xứng nhau qua một trục thì bằng nhau nên chúng cũng có chu vi bằng nhau.</p> <p><strong>LG c.</strong></p> <p>Một đường tròn có vô số trục đối xứng.</p> <p><strong>Phương pháp giải:</strong></p> <p>- Hai điểm gọi là đối xứng với nhau qua đường thẳng <span id="MathJax-Element-19-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-57" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-58" class="mjx-mrow"><span id="MJXc-Node-59" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> nếu <span id="MathJax-Element-20-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-60" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-61" class="mjx-mrow"><span id="MJXc-Node-62" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> là đường trung trực của đoạn thẳng nối hai điểm đó.</p> <p>- Hai hình gọi là đối xứng với nhau qua đường thẳng <span id="MathJax-Element-21-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-63" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-64" class="mjx-mrow"><span id="MJXc-Node-65" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua đường thẳng <span id="MathJax-Element-22-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-66" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-67" class="mjx-mrow"><span id="MJXc-Node-68" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> và ngược lại.</p> <p>- Đường thẳng <span id="MathJax-Element-23-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-69" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-70" class="mjx-mrow"><span id="MJXc-Node-71" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math></span></span> gọi là trục đối xứng của hình <span id="MathJax-Element-24-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math></span></span> nếu điểm đối xứng với mỗi điểm thuộc hình <span id="MathJax-Element-25-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>"><span id="MJXc-Node-75" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-76" class="mjx-mrow"><span id="MJXc-Node-77" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span> qua đường thẳng <span id="MathJax-Element-26-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-78" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-79" class="mjx-mrow"><span id="MJXc-Node-80" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math></span></span> cũng thuộc hình <span id="MathJax-Element-27-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>.</mo></math>"><span id="MJXc-Node-81" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-82" class="mjx-mrow"><span id="MJXc-Node-83" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span><span id="MJXc-Node-84" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span></p> <p><strong>Lời giải chi tiết:</strong></p> <p>Đúng vì tất cả các đường thẳng đi qua tâm đều là trục đối xứng của đường tròn.</p> <p><strong>LG d.</strong></p> <p>Một đoạn thẳng chỉ có một trục đối xứng.</p> <p><strong>Phương pháp giải:</strong></p> <p>- Hai điểm gọi là đối xứng với nhau qua đường thẳng <span id="MathJax-Element-28-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-85" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-86" class="mjx-mrow"><span id="MJXc-Node-87" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> nếu <span id="MathJax-Element-29-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-88" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-89" class="mjx-mrow"><span id="MJXc-Node-90" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> là đường trung trực của đoạn thẳng nối hai điểm đó.</p> <p>- Hai hình gọi là đối xứng với nhau qua đường thẳng <span id="MathJax-Element-30-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-91" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-92" class="mjx-mrow"><span id="MJXc-Node-93" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua đường thẳng <span id="MathJax-Element-31-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-94" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-95" class="mjx-mrow"><span id="MJXc-Node-96" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> và ngược lại.</p> <p>- Đường thẳng <span id="MathJax-Element-32-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-97" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-98" class="mjx-mrow"><span id="MJXc-Node-99" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> gọi là trục đối xứng của hình <span id="MathJax-Element-33-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>"><span id="MJXc-Node-100" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-101" class="mjx-mrow"><span id="MJXc-Node-102" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span> nếu điểm đối xứng với mỗi điểm thuộc hình <span id="MathJax-Element-34-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>"><span id="MJXc-Node-103" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-104" class="mjx-mrow"><span id="MJXc-Node-105" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span></span></span></span> qua đường thẳng <span id="MathJax-Element-35-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>"><span id="MJXc-Node-106" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-107" class="mjx-mrow"><span id="MJXc-Node-108" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">d</span></span></span></span></span> cũng thuộc hình <span id="MathJax-Element-36-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>.</mo></math>"><span id="MJXc-Node-109" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-110" class="mjx-mrow"><span id="MJXc-Node-111" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">H</span></span><span id="MJXc-Node-112" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span></p> <p><strong>Lời giải chi tiết:</strong></p> <p><strong><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/03072022/6cd760eb-ffe4-4bd8-9b44-4a36a2fb9b6b.PNG" /></strong></p> <p>Sai.</p> <p>Giải thích: Đoạn thẳng <span id="MathJax-Element-37-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math>"><span id="MJXc-Node-113" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-114" class="mjx-mrow"><span id="MJXc-Node-115" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-116" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math></span></span> trên hình bên có hai trục đối xứng đó là đường thẳng <span id="MathJax-Element-38-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math>"><span id="MJXc-Node-117" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-118" class="mjx-mrow"><span id="MJXc-Node-119" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-120" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math></span></span> và đường trung trực của đoạn <span id="MathJax-Element-39-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mo>.</mo></math>"><span id="MJXc-Node-121" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-122" class="mjx-mrow"><span id="MJXc-Node-123" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-124" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-125" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span></p> <p> </p>
Xem lời giải bài tập khác cùng bài
Hướng dẫn giải Bài 35 (Trang 87 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 36 (Trang 87 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 37 (Trang 87 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 38 (Trang 88 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 39 (Trang 88 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 40 (Trang 88 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 42 (Trang 88 SGK Toán Hình học 8, Tập 1)
Xem lời giải