Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Chọn lớp
Lớp 6
Lớp 7
Lớp 8
Lớp 9
Lớp 10
Lớp 11
Lớp 12
Đăng ký
Đăng nhập
Trang chủ
Hỏi gia sư
Gia sư 1-1
Chuyên đề
Trắc nghiệm
Tài liệu
Cửa hàng
Trang chủ
/
Giải bài tập
/ Lớp 8 / Toán học /
Bài 6: Đối Xứng Trục
Bài 6: Đối Xứng Trục
Hướng dẫn giải Bài 36 (Trang 87 SGK Toán Hình học 8, Tập 1)
<p><strong>Đề bài</strong><br />Cho góc xOy có số đo <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>50</mn><mo>∘</mo></msup></math>, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.<br />a) So sánh các độ dài OB và OC.<br />b) Tính số đo góc BOC.</p> <p><strong>Lời giải chi tiết </strong></p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/01072022/e528a4a5-1097-469f-a93b-32e3668e8b2c.PNG" /></p> <p>a) Vì <span id="MathJax-Element-18-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>"><span id="MJXc-Node-72" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-73" class="mjx-mrow"><span id="MJXc-Node-74" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span></span></span> đối xứng với <span id="MathJax-Element-19-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>"><span id="MJXc-Node-75" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-76" class="mjx-mrow"><span id="MJXc-Node-77" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span></span></span></span> qua <span id="MathJax-Element-20-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>x</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>x</mi></math></span></span> (giả thiết)</p> <p><span id="MathJax-Element-21-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">&#x21D2;</mo><mi>O</mi><mi>x</mi></math>"><span id="MJXc-Node-82" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-83" class="mjx-mrow"><span id="MJXc-Node-84" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">⇒</span></span><span id="MJXc-Node-85" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">O</span></span><span id="MJXc-Node-86" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">x</span></span></span></span></span> là đường trung trực của <span id="MathJax-Element-22-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi></math>"><span id="MJXc-Node-87" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-88" class="mjx-mrow"><span id="MJXc-Node-89" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-90" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span></span></span></p> <p><span id="MathJax-Element-23-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">&#x21D2;</mo><mi>O</mi><mi>A</mi><mo>=</mo><mi>O</mi><mi>B</mi></math>"><span id="MJXc-Node-91" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-92" class="mjx-mrow"><span id="MJXc-Node-93" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">⇒</span></span><span id="MJXc-Node-94" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">O</span></span><span id="MJXc-Node-95" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-96" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-97" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">O</span></span><span id="MJXc-Node-98" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span></span></span></span> (tính chất đường trung trực) (1)</p> <p>Vì <span id="MathJax-Element-24-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math></span></span> đối xứng với <span id="MathJax-Element-25-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math></span></span> qua <span id="MathJax-Element-26-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>y</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>y</mi></math></span></span> <span id="MathJax-Element-27-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">&#x21D2;</mo><mi>O</mi><mi>y</mi></math>"><span id="MJXc-Node-109" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-110" class="mjx-mrow"><span id="MJXc-Node-111" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">⇒</span></span><span id="MJXc-Node-112" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">O</span></span><span id="MJXc-Node-113" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">y</span></span></span></span></span> là đường trung trực của <span id="MathJax-Element-28-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>C</mi></math>"><span id="MJXc-Node-114" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-115" class="mjx-mrow"><span id="MJXc-Node-116" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-117" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span></span></span></span></p> <p><span id="MathJax-Element-29-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">&#x21D2;</mo><mi>O</mi><mi>A</mi><mo>=</mo><mi>O</mi><mi>C</mi></math>"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">⇒</mo><mi>O</mi><mi>A</mi><mo>=</mo><mi>O</mi><mi>C</mi></math></span></span> (tính chất đường trung trực) (2)</p> <p>Từ (1) và (2) suy ra <span id="MathJax-Element-30-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>B</mi><mo>=</mo><mi>O</mi><mi>C</mi><mo>.</mo></math>"><span id="MJXc-Node-126" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-127" class="mjx-mrow"><span id="MJXc-Node-128" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">O</span></span><span id="MJXc-Node-129" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-130" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-131" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">O</span></span><span id="MJXc-Node-132" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-133" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span></p> <p>b) Vì OA=OB (chứng minh trên) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>⇒</mo><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>O</mi><mo>⁢</mo><mi>B</mi></mstyle></math> cân tại O (dấu hiệu nhận biết tam giác cân).</p> <p>Trong tam giác cân đường trung trực của cạnh đáy đồng thời là đường phân giác nên Ox là phân giác của <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>O</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>.</mo></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mover accent="true"><msub><mi>O</mi><mn>1</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>O</mi><mn>2</mn></msub><mo>^</mo></mover><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>O</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>⁢</mo></math><br />Lại có <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">Δ</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>O</mi><mo>⁢</mo><mi>C</mi></mstyle></math> cân tại O (vì OA=OC)<br />Trong tam giác cân đường trung trực của cạnh đáy đồng thời là đường phân giác nên Oy là phân giác của <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>O</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>.</mo></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mover accent="true"><msub><mi>O</mi><mn>3</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>O</mi><mn>4</mn></msub><mo>^</mo></mover><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>⁢</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>O</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>⁢</mo></math><br />Do đó<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⁢</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>O</mi><mo>⁢</mo><mi>B</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>A</mi><mo>⁢</mo><mi>O</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>O</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>O</mi><mn>2</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>O</mi><mn>3</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>O</mi><mn>4</mn></msub><mo>^</mo></mover><mo>=</mo><mover accent="true"><msub><mi>O</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>O</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>O</mi><mn>3</mn></msub><mo>^</mo></mover><mo>+</mo><mpadded><mover accent="true"><msub><mi>O</mi><mn>3</mn></msub><mo>^</mo></mover></mpadded><mo>⁢</mo><mspace linebreak="newline"/><mo>=</mo><mn>2</mn><mo>.</mo><mover accent="true"><msub><mi>O</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mn>2</mn><mo>.</mo><mover accent="true"><msub><mi>O</mi><mn>3</mn></msub><mo>^</mo></mover><mo>=</mo><mn>2</mn><mo>⁢</mo><mrow><mo>(</mo><mover accent="true"><msub><mi>O</mi><mn>1</mn></msub><mo>^</mo></mover><mo>+</mo><mover accent="true"><msub><mi>O</mi><mn>3</mn></msub><mo>^</mo></mover><mo>)</mo></mrow><mo>=</mo><mn>2</mn><mover accent="true"><mrow><mi>x</mi><mo>⁢</mo><mi>O</mi><mo>⁢</mo><mi>y</mi></mrow><mo>^</mo></mover><mo>⁢</mo><mo>=</mo><mpadded><msup><mn>2.50</mn><mo>∘</mo></msup></mpadded><mo>=</mo><msup><mn>100</mn><mo>∘</mo></msup><mspace linebreak="newline"/><mi>V</mi><mi>ậ</mi><mi>y</mi><mo> </mo><mover accent="true"><mrow><mi>B</mi><mo>⁢</mo><mi>O</mi><mo>⁢</mo><mi>C</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>100</mn><mo>∘</mo></msup><mo>⁢</mo></math></p> <p><br /><br /></p>
Xem lời giải bài tập khác cùng bài
Hướng dẫn giải Bài 35 (Trang 87 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 37 (Trang 87 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 38 (Trang 88 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 39 (Trang 88 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 40 (Trang 88 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 41 (Trang 88 SGK Toán Hình học 8, Tập 1)
Xem lời giải
Hướng dẫn giải Bài 42 (Trang 88 SGK Toán Hình học 8, Tập 1)
Xem lời giải