Bài 6: Đối Xứng Trục
Hướng dẫn giải Bài 37 (Trang 87 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>T&igrave;m c&aacute;c h&igrave;nh c&oacute; trục đối xứng tr&ecirc;n h&igrave;nh 59.</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/01072022/8c4ba0d1-13b5-4e4a-9f43-a20605870a4e.PNG" /></p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p>- C&aacute;c h&igrave;nh c&oacute; trục đối xứng l&agrave; h&igrave;nh:&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-17" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-18" class="mjx-mrow"><span id="MJXc-Node-19" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">a</span></span><span id="MJXc-Node-20" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-21" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">b</span></span><span id="MJXc-Node-22" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-23" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-24" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-25" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">d</span></span><span id="MJXc-Node-26" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-27" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">e</span></span><span id="MJXc-Node-28" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-29" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">g</span></span><span id="MJXc-Node-30" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-31" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">i</span></span><span id="MJXc-Node-32" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span></p> <p>- H&igrave;nh&nbsp;<span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math></span></span>&nbsp;kh&ocirc;ng c&oacute; trục đối xứng.</p> <p><img class="wscnph" style="max-width: 100%;" src="https://static.colearn.vn:8413/v1.0/upload/library/01072022/0edd5127-1020-459d-a7f0-3b5fd76ccafc.PNG" /></p> <p>- H&igrave;nh c&oacute; một trục đối xứng l&agrave;:&nbsp;<span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-36" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-37" class="mjx-mrow"><span id="MJXc-Node-38" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">b</span></span><span id="MJXc-Node-39" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-40" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">c</span></span><span id="MJXc-Node-41" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-42" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">d</span></span><span id="MJXc-Node-43" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-44" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">e</span></span><span id="MJXc-Node-45" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-46" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">i</span></span></span></span></span></p> <p>- H&igrave;nh c&oacute; hai trục đối xứng l&agrave;:&nbsp;<span id="MathJax-Element-9-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-47" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-48" class="mjx-mrow"><span id="MJXc-Node-49" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">a</span></span></span></span></span></p> <p>- H&igrave;nh c&oacute; năm trục đối xứng l&agrave;:&nbsp;<span id="MathJax-Element-10-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-50" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-51" class="mjx-mrow"><span id="MJXc-Node-52" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">g</span></span><span id="MJXc-Node-53" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span></p> <p>&nbsp;</p> <p>&nbsp;</p>
Xem lời giải bài tập khác cùng bài