SGK Toán 8 Cơ bản
(Mục lục SGK Toán 8 Cơ bản)
Bài 5: Diện Tích Hình Thoi
Hướng dẫn giải Bài 34 (Trang 128 SGK Toán Hình học 8, Tập 1)

Đề bài

Cho một hình chữ nhật. Vẽ tứ giác có các đỉnh là trung điểm các cạnh của hình chữ nhật . Vì sao tứ giác này là một hình thoi? So sánh diện tích hình thoi và diện tích hình chữ nhật, từ đó suy ra cách tính diện tích hình thoi.

Lời giải chi tiết

Vẽ hình chữ nhật ABCD lần lượt là trung điểm các cạnh AD,AB,BC,CD

Vẽ tứ giác 

Ta có:

N là đường trung bình của tam giác ABD nên

MN=12BD (tính chất)
PQ là đường trung bình của tam giác CBD nên PQ=12BD (tính chất)
NP là đường trung bình của tam giác ABC nên NP=12AC (tính chất)
MQ là đường trung bình của tam giác ADC nên MQ=12AC (tính chất)
ABCD là hình chữ nhật nên AC=BD (tính chất hình chữ' nhật) nên suy ra MN=PQ=NP=MQ
MNPQ là hình thoi (dấu hiệu nhận biết hình thoi)
Ta có: ΔAMN=ΔINM,ΔBPN=ΔNIP,
ΔPCQ=ΔIQP,ΔDMQ=ΔIQM
SAMN=SINM,SBPN=SNIP
SPCQ=SIQP,SDMQ=SIQM
Ta có:
SMNPQ=SMNI+SNIP+SIQP+SMQI
=SAMN+SBNP+SPCQ+SMQD
=12SABCD=12AB.AD
=12MPNQ
Vậy MNPQ=12MP.NQ.

Do đó diện tích hình thoi bằng nửa tích hai đường chéo.

Xem lời giải bài tập khác cùng bài
Chuyên đề bổ trợ kiến thức lớp 8
action
thumnail

Chương 1: Phép nhân và phép chia đa thức

Lớp 8Toán34 video
action
thumnail

Chương 2: Phân thức đại số

Lớp 8Toán43 video
action
thumnail

Chương 3: Phương trình bậc nhất một ẩn

Lớp 8Toán23 video