Bài 5: Diện Tích Hình Thoi
Hướng dẫn giải Bài 34 (Trang 128 SGK Toán Hình học 8, Tập 1)
<p><strong class="content_question">Đề b&agrave;i</strong></p> <p>Cho một h&igrave;nh chữ nhật. Vẽ tứ gi&aacute;c c&oacute; c&aacute;c đỉnh l&agrave; trung điểm c&aacute;c cạnh của h&igrave;nh chữ nhật . V&igrave; sao tứ gi&aacute;c n&agrave;y l&agrave; một h&igrave;nh thoi? So s&aacute;nh diện t&iacute;ch h&igrave;nh thoi v&agrave; diện t&iacute;ch h&igrave;nh chữ nhật, từ đ&oacute; suy ra c&aacute;ch t&iacute;nh diện t&iacute;ch h&igrave;nh thoi.</p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p>Vẽ h&igrave;nh chữ nhật&nbsp;<span id="MathJax-Element-4-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></math></span></span>.&nbsp;<span id="MathJax-Element-5-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;"><span id="MJXc-Node-39" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-40" class="mjx-mrow"><span id="MJXc-Node-41" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span><span id="MJXc-Node-42" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-43" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">N</span></span><span id="MJXc-Node-44" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-45" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">P</span></span><span id="MJXc-Node-46" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-47" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">Q</span></span><span id="MJXc-Node-48" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">.</span></span></span></span></span>&nbsp;lần lượt l&agrave;&nbsp;trung điểm c&aacute;c cạnh AD,AB,BC,CD</p> <p>Vẽ tứ gi&aacute;c&nbsp;<span id="MathJax-Element-6-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-49" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-50" class="mjx-mrow"><span id="MJXc-Node-51" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span><span id="MJXc-Node-52" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">N</span></span><span id="MJXc-Node-53" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">P</span></span><span id="MJXc-Node-54" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">Q</span></span></span></span></span></p> <p><img src="https://img.loigiaihay.com/picture/2018/0716/b34-trang-128-sgk-toan-8-t-1-c2.jpg" /></p> <p>Ta c&oacute;:</p> <p><span id="MathJax-Element-7-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-55" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-56" class="mjx-mrow"><span id="MJXc-Node-57" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">M</span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math></span></span>&nbsp;l&agrave; đường trung b&igrave;nh của tam gi&aacute;c&nbsp;<span id="MathJax-Element-8-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mi>D</mi></math></span></span>&nbsp;n&ecirc;n</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>M</mi><mo>&#8290;</mo><mi>N</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> (t&iacute;nh chất)<br />PQ l&agrave; đường trung b&igrave;nh của tam gi&aacute;c CBD n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>P</mi><mo>&#8290;</mo><mi>Q</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> (t&iacute;nh chất)<br />NP l&agrave; đường trung b&igrave;nh của tam gi&aacute;c ABC n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>N</mi><mo>&#8290;</mo><mi>P</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> (t&iacute;nh chất)<br />MQ l&agrave; đường trung b&igrave;nh của tam gi&aacute;c ADC n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>M</mi><mo>&#8290;</mo><mi>Q</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi></mstyle></math> (t&iacute;nh chất)<br />M&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>ABCD</mi></mstyle></math> l&agrave; h&igrave;nh chữ nhật n&ecirc;n AC=BD (t&iacute;nh chất h&igrave;nh chữ' nhật) n&ecirc;n suy ra MN=PQ=NP=MQ<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&#8658;</mo><mi>M</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>P</mi><mo>&#8290;</mo><mi>Q</mi></mstyle></math> l&agrave; h&igrave;nh thoi (dấu hiệu nhận biết h&igrave;nh thoi)<br />Ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>N</mi><mo>=</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>M</mi><mo>,</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>P</mi><mo>&#8290;</mo><mi>N</mi><mo>=</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>P</mi><mo>,</mo></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>P</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>Q</mi><mo>=</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>Q</mi><mo>&#8290;</mo><mi>P</mi><mo>,</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>Q</mi><mo>=</mo><mi mathvariant="normal">&#916;</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>Q</mi><mo>&#8290;</mo><mi>M</mi></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mrow><mo>&#8658;</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>N</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>I</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>M</mi></mrow></msub></mrow><mo>,</mo><msub><mi>S</mi><mrow><mi>B</mi><mo>&#8290;</mo><mi>P</mi><mo>&#8290;</mo><mi>N</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>N</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>P</mi></mrow></msub></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mrow><mi>P</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>Q</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>I</mi><mo>&#8290;</mo><mi>Q</mi><mo>&#8290;</mo><mi>P</mi></mrow></msub><mo>,</mo><msub><mi>S</mi><mrow><mi>D</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>Q</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>I</mi><mo>&#8290;</mo><mi>Q</mi><mo>&#8290;</mo><mi>M</mi></mrow></msub></mstyle></math><br />Ta c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msub><mi>S</mi><mrow><mi>M</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>P</mi><mo>&#8290;</mo><mi>Q</mi></mrow></msub><mo>=</mo><msub><mi>S</mi><mrow><mi>M</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>I</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>N</mi><mo>&#8290;</mo><mi>I</mi><mo>&#8290;</mo><mi>P</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>I</mi><mo>&#8290;</mo><mi>Q</mi><mo>&#8290;</mo><mi>P</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>M</mi><mo>&#8290;</mo><mi>Q</mi><mo>&#8290;</mo><mi>I</mi></mrow></msub></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>=</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>N</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>B</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>P</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>P</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>Q</mi></mrow></msub><mo>+</mo><msub><mi>S</mi><mrow><mi>M</mi><mo>&#8290;</mo><mi>Q</mi><mo>&#8290;</mo><mi>D</mi></mrow></msub></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi mathvariant="normal">D</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8901;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>.</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8901;</mo><mi>M</mi><mo>&#8290;</mo><mi>P</mi><mo>&#8901;</mo><mi>N</mi><mo>&#8290;</mo><mi>Q</mi></mstyle></math><br />Vậy <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>&#8290;</mo><mi>N</mi><mo>&#8290;</mo><mi>P</mi><mo>&#8290;</mo><mi>Q</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>M</mi><mo>&#8290;</mo><mi>P</mi><mo>.</mo><mi>N</mi><mo>&#8290;</mo><mi>Q</mi></math>.</p> <p>Do đ&oacute; diện t&iacute;ch h&igrave;nh thoi bằng nửa t&iacute;ch hai đường ch&eacute;o.<br /><br /></p>
Xem lời giải bài tập khác cùng bài