Bài 5: Diện Tích Hình Thoi
Hướng dẫn giải Bài 35 (Trang 129 SGK Toán Hình học 8, Tập 1)
<p>Đề b&agrave;i<br />T&iacute;nh diện t&iacute;ch h&igrave;nh thoi c&oacute; cạnh d&agrave;i 6cm v&agrave; một trong c&aacute;c g&oacute;c của n&oacute; c&oacute; số đo l&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><msup><mn>60</mn><mo>&#8728;</mo></msup></mstyle></math></p> <p><strong class="content_detail">Lời giải chi tiết</strong></p> <p><img src="https://img.loigiaihay.com/picture/2018/0716/b35-trang-129-sgk-toan-8-t-1-c2_1.jpg" /></p> <p>X&eacute;t h&igrave;nh thoi ABCD c&oacute; cạnh 6cm v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mrow><mi>B</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>60</mn><mo>&#8728;</mo></msup></mstyle></math>. Kẻ <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>B</mi><mo>&#8290;</mo><mi>H</mi><mo>&#10178;</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math><br />C&ocirc;ng thức tổng qu&aacute;t t&iacute;nh độ d&agrave;i đường cao BH:<br />Ta c&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> l&agrave; tam gi&aacute;c đều (v&igrave; tam gi&aacute;c ABD c&acirc;n c&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>=</mo><msup><mn>60</mn><mo>&#8728;</mo></msup></mstyle></math>)<br />Tam gi&aacute;c ABD đều n&ecirc;n đường cao <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>BH</mi></mstyle></math> cũng l&agrave; đường trung tuyến hay H l&agrave; trung điểm của AD<br />Suy ra <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>A</mi><mo>&#8290;</mo><mi>H</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>D</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mn>2</mn></mfrac></mstyle></math><br />&Aacute;p dụng định l&iacute; Pytago v&agrave;o tam gi&aacute;c vu&ocirc;ng ABH c&oacute;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><msup><mi>H</mi><mn>2</mn></msup><mo>=</mo><mi>A</mi><msup><mi>B</mi><mn>2</mn></msup><mo>-</mo><mi>A</mi><mpadded><msup><mi>H</mi><mn>2</mn></msup></mpadded><mspace linebreak="newline"/><mo>=</mo><mi>A</mi><msup><mi>B</mi><mn>2</mn></msup><mo>-</mo><mpadded><msup><mrow><mo>(</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi></mrow><mn>2</mn></mfrac><mo>)</mo></mrow><mn>2</mn></msup></mpadded><mspace linebreak="newline"/><mo>=</mo><mi>A</mi><msup><mi>B</mi><mn>2</mn></msup><mo>-</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><msup><mi>B</mi><mn>2</mn></msup></mrow><mn>4</mn></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><msup><mi>B</mi><mn>2</mn></msup></mrow><mn>4</mn></mfrac><mo>.</mo><mspace linebreak="newline"/><mo>&#8658;</mo><mi>B</mi><mi>H</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8901;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow></math><br />Tổng qu&aacute;t: Đường cao tam gi&aacute;c đều cạnh a c&oacute; độ d&agrave;i l&agrave;:<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><msub><mi>h</mi><mi>a</mi></msub><mo>=</mo><mfrac><mrow><mi>a</mi><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>&#8290;</mo></math></p> <p>&Aacute;p dụng v&agrave;o b&agrave;i với cạnh a=6cm th&igrave;<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>H</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mo>&#8901;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>=</mo><mn>3</mn><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt><mo>&#8290;</mo><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow><mo>&#8290;</mo></math><br />T&iacute;nh diện t&iacute;ch h&igrave;nh thoi ABCD.<br />C&aacute;ch 1:<br />Ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>B</mi><mo>&#8290;</mo><mi>H</mi><mo>=</mo><mn>3</mn><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mstyle></math> (cm) (theo tr&ecirc;n)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#8290;</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow></msub><mo>=</mo><mi>B</mi><mo>&#8290;</mo><mi>H</mi><mo>.</mo><mi>A</mi><mo>&#8290;</mo><mi>D</mi><mo>=</mo><mn>3</mn><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt><mo>&#8901;</mo><mn>6</mn><mo>=</mo><mn>18</mn><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt><mo>&#8290;</mo><mrow><mo>(</mo><msup><mi>cm</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>&#8290;</mo></math><br />C&aacute;ch 2:<br />V&igrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&#9651;</mi><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi></mstyle></math> l&agrave; tam gi&aacute;c đều n&ecirc;n <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi>B</mi><mo>&#8290;</mo><mi>D</mi><mo>=</mo><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>=</mo><mpadded><mn>6</mn></mpadded><mo>&#8290;</mo><mi>cm</mi><mo>,</mo><mi>A</mi><mo>&#8290;</mo><mi>I</mi></mstyle></math> l&agrave; đường cao đồng thời l&agrave; trung tuyến tam gi&aacute;c n&ecirc;n<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>&#8290;</mo><mi>I</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac><mo>=</mo><mn>3</mn><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt><mo>&#8290;</mo><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow><mo>&#8290;</mo><mspace linebreak="newline"/><mo>&#8658;</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>=</mo><mn>2</mn><mo>&#8290;</mo><mi>A</mi><mo>&#8290;</mo><mi>I</mi><mo>=</mo><mn>6</mn><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt><mo>&#8290;</mo><mrow><mo>(</mo><mi>cm</mi><mo>)</mo></mrow><mo>&#8290;</mo><mspace linebreak="newline"/><mo>&#8290;</mo><msub><mi>S</mi><mrow><mi>A</mi><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>C</mi><mo>&#8290;</mo><mi>D</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mi>B</mi><mo>&#8290;</mo><mi>D</mi><mo>&#8901;</mo><mi>A</mi><mo>&#8290;</mo><mi>C</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&#8290;</mo><mn>6.6</mn><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt><mo>=</mo><mn>18</mn><mo>&#8290;</mo><msqrt><mn>3</mn></msqrt><mo>&#8290;</mo><mrow><mo>(</mo><msup><mi>cm</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>&#8290;</mo></math></p>
Xem lời giải bài tập khác cùng bài