Bài 1: Tứ Giác
Hướng dẫn giải Bài 3 (Trang 67 SGK Toán Hình học 8, Tập 1)
<p>Ta gọi tứ gi&aacute;c&nbsp;<span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-4" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-6" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>&nbsp;tr&ecirc;n h&igrave;nh&nbsp;<span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/math&gt;"><span id="MJXc-Node-7" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-8" class="mjx-mrow"><span id="MJXc-Node-9" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R">8</span></span></span></span></span>&nbsp;c&oacute;&nbsp;<span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="margin: 0px; padding: 1px 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; color: #000000; font-family: OpenSans, Tahoma, Helvetica, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;"><span id="MJXc-Node-10" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-11" class="mjx-mrow"><span id="MJXc-Node-12" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-13" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-14" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-15" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">A</span></span><span id="MJXc-Node-16" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span><span id="MJXc-Node-17" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R">,</span></span><span id="MJXc-Node-18" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-19" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">B</span></span><span id="MJXc-Node-20" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R">=</span></span><span id="MJXc-Node-21" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I">C</span></span><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I">D</span></span></span></span></span>&nbsp;l&agrave; h&igrave;nh "c&aacute;i diều"<br /><img src="https://vietjack.com/giai-toan-lop-8/images/bai-3-trang-67-sgk-toan-8-tap-1-1.PNG" alt="Giải b&agrave;i 3 trang 67 To&aacute;n 8 Tập 1 | Giải b&agrave;i tập To&aacute;n 8" /></p> <p><strong>LG a.</strong><br />Chứng minh rằng AC l&agrave; đường trung trực của BD.<br /><strong>Phương ph&aacute;p giải:</strong><br />&Aacute;p dụng: T&iacute;nh chất: Một điểm thuộc đường trung trực của một đoạn thẳng th&igrave; c&aacute;ch đều hai đầu m&uacute;t của đoạn thẳng đ&oacute;.<br /><strong>Lời giải chi tiết:</strong><br />Ta c&oacute;: AB=AD (giả thiết) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&rArr;</mo><mi>A</mi></mstyle></math> thuộc đường trung trực của BD (Theo t&iacute;nh chất một điểm c&aacute;ch đều hai đầu của đoạn thẳng</p> <p>th&igrave; thuộc đường trung trực của đoạn thẳng đ&oacute;).<br />CB=CD (giả thiết) <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&rArr;</mo><mi>C</mi></mstyle></math> thuộc đường trung trực của BD (Theo t&iacute;nh chất một điểm c&aacute;ch đều hai đầu của đoạn thẳng th&igrave; thuộc</p> <p>đường trung trực của đoạn thẳng đ&oacute;).<br />Vậy AC l&agrave; đường trung trực của BD.<br /><strong>LG b.</strong><br />T&iacute;nh <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>;</mo><mover accent="true"><mi>D</mi><mo>^</mo></mover></mstyle></math> biết rằng <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>A</mi><mo>^</mo></mover><mo>=</mo><msup><mn>100</mn><mn>0</mn></msup><mo>;</mo><mover accent="true"><mi>C</mi><mo>^</mo></mover><mo>=</mo><msup><mn>60</mn><mn>0</mn></msup><mo>.</mo></math><br /><strong>Phương ph&aacute;p giải:</strong><br />&Aacute;p dụng:<br />- Định l&yacute;: Tổng c&aacute;c g&oacute;c của một tứ gi&aacute;c bằng <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>360</mn><mn>0</mn></msup></math><br />- T&iacute;nh chất hai tam gi&aacute;c bằng nhau.<br /><strong>Lời giải chi tiết:</strong></p> <p>X&eacute;t <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">△</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi></mstyle></math> v&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&Delta;</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mstyle></math> c&oacute;:<br />+) AB=AD (giả thiết)<br />+) BC=DC (giả thiết)<br />+) AC cạnh chung<br />Suy ra <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mi mathvariant="normal">&Delta;</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>B</mi><mo>⁢</mo><mi>C</mi><mo>=</mo><mi mathvariant="normal">&Delta;</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi>D</mi><mo>⁢</mo><mi>C</mi></mstyle></math> (с.с.с)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mo>&rArr;</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>=</mo><mover accent="true"><mi>D</mi><mo>^</mo></mover></mstyle></math> (hai g&oacute;c tương ứng)<br />X&eacute;t tứ gi&aacute;c ABCD, ta c&oacute;: <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>B</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mi mathvariant="normal">D</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi mathvariant="normal">D</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>B</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi mathvariant="normal">D</mi></mrow><mo>^</mo></mover><mo>=</mo><msup><mn>360</mn><mo>∘</mo></msup></mstyle></math> (Định l&iacute; tổng c&aacute;c g&oacute;c của một tứ gi&aacute;c).<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr;</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi mathvariant="normal">D</mi><mo>^</mo></mover><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><mrow><mo>(</mo><mover accent="true"><mrow><mi>B</mi><mo>⁢</mo><mi>C</mi><mo>⁢</mo><mi mathvariant="normal">D</mi></mrow><mo>^</mo></mover><mo>+</mo><mover accent="true"><mrow><mi>B</mi><mo>⁢</mo><mi>A</mi><mo>⁢</mo><mi mathvariant="normal">D</mi></mrow><mo>^</mo></mover><mo>)</mo></mrow><mo>⁢</mo><mspace linebreak="newline"></mspace><mo>=</mo><msup><mn>360</mn><mn>0</mn></msup><mo>-</mo><mrow><mo>(</mo><msup><mn>60</mn><mn>0</mn></msup><mo>+</mo><msup><mn>100</mn><mn>0</mn></msup><mo>)</mo></mrow><mo>=</mo><msup><mn>200</mn><mn>0</mn></msup><mo>⁢</mo></math><br />M&agrave; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>=</mo><mover accent="true"><mi>D</mi><mo>^</mo></mover></mstyle></math> (chứng minh tr&ecirc;n)<br /><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&rArr;</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>+</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>=</mo><mpadded><msup><mn>200</mn><mn>0</mn></msup></mpadded><mo>⁢</mo><mspace linebreak="newline"></mspace><mo>&rArr;</mo><mn>2</mn><mo>⁢</mo><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>=</mo><msup><mn>200</mn><mo>∘</mo></msup><mo>⁢</mo></math><br />Do đ&oacute; <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mover accent="true"><mi>B</mi><mo>^</mo></mover><mo>=</mo><mover accent="true"><mi mathvariant="normal">D</mi><mo>^</mo></mover><mo>=</mo><msup><mn>200</mn><mn>0</mn></msup><mo>:</mo><mn>2</mn><mo>=</mo><msup><mn>100</mn><mn>0</mn></msup></mstyle></math>.</p>
Xem lời giải bài tập khác cùng bài